summaryrefslogtreecommitdiff
path: root/training
AgeCommit message (Expand)Author
7 hoursStreamline CNN v2 training pipeline outputskal
7 hoursFix CNN v2 training: always save final checkpoint, derive num_layersskal
7 hoursFix --mix option: blend prev layer with static p4-p7, not p0-p3skal
7 hoursFix CNN v2 static feature channel mapping (p4-p7 → channels 8-11)skal
8 hoursgen_identity_weights: Change --mix to 50-50 blendskal
8 hoursgen_identity_weights: Add --p47 option for static feature visualizationskal
8 hoursgen_identity_weights: Add --mix option for static feature blendingskal
9 hoursCNN v2: Fix Layer 0 visualization scale (was 0.5, now 1.0)skal
9 hoursCNN v2: Add debugging tools for mismatch investigationskal
9 hoursCNN v2 training: Fix float64/float32 dtype mismatch in depth featureskal
9 hoursCNN v2: Alpha channel depth handling and layer visualizationskal
10 hoursCNN v2: Use alpha channel for p3 depth feature + layer visualizationskal
15 hoursCNN v2 training: Add --grayscale-loss option for luminance-based loss computa...skal
15 hoursCNN v2: Change feature #6 from sin(10*x) to sin(20*y)skal
15 hoursCNN v2: Add TODO for flexible feature layout in binary format v3skal
16 hoursCNN v2: Add mip-level support to runtime effectskal
16 hoursCNN v2 export: Read and display mip_level from checkpointsskal
16 hoursCNN v2: Add --mip-level option for parametric featuresskal
16 hoursCNN v2: Fix activation function mismatch between training and inferenceskal
20 hoursCNN v2 training: Use target image alpha channelskal
20 hoursCNN v2: Restore per-layer kernel sizes supportskal
20 hoursCNN v2: Refactor to uniform 12D→4D architectureskal
24 hoursAdd weights/ subdirectory to workspaces for CNN training outputsskal
41 hourstest_demo: Add beat-synchronized CNN post-processing with version selectionskal
44 hoursRefine training script output and validationskal
44 hoursTODO: 8-bit weight quantization for 2Ɨ size reductionskal
44 hoursCNN v2: Storage buffer complete - real weights exportedskal
44 hoursCNN v2: storage buffer architecture foundationskal
45 hoursTODO: Add random sampling to patch-based trainingskal
45 hoursCNN v2: Patch-based training as default (like CNN v1)skal
45 hoursFix: CNN v2 training - handle variable image sizesskal
45 hoursCNN v2: parametric static features - Phases 1-4skal
47 hoursremove more stale filesskal
2 daysfeat: implement beat-based timing systemskal
2 daysadd trained layersskal
2 daysdocs: Update CNN comments and add bias fix summaryskal
2 daysfix: CNN bias accumulation and output format improvementsskal
3 daysupdate cnn codeskal
3 daysrefactor: Use linspace(-1,1) directly for coordsskal
3 daysfix: Compute gray from [0,1] RGB in CNN shader generatorskal
3 daysfix: Complete auxiliary texture initialization fixskal
3 daysadd --save-intermediates to train.py and cnn_testskal
3 daysfix: Move sigmoid activation to call site in CNN layer shaderskal
3 daysfix: Replace clamp with sigmoid in CNN final layerskal
3 daysfeat: Add early stopping to CNN trainingskal
3 daysfix: CNN training/inference to match WGSL sliding windowskal
3 daysformat .wgsl layer code (cosmetics)skal
3 daysfix: Use patch-based inference to match CNN training distributionskal
3 daysopt: Move invariant in1 calculation outside CNN convolution loopsskal
3 daysopt: Vec4-optimize CNN convolution shaders for SIMDskal