diff options
| author | skal <pascal.massimino@gmail.com> | 2026-02-14 01:33:37 +0100 |
|---|---|---|
| committer | skal <pascal.massimino@gmail.com> | 2026-02-14 01:33:37 +0100 |
| commit | 4f107cc2d215a8bff69ea85eb10ee91920e797a3 (patch) | |
| tree | 0204ff67cec9c5a3347692cd2511c5bda9d541f3 /training | |
| parent | 3ef1e484ff1328ac51511a8a8ccab397392a8491 (diff) | |
Fix CNN v2 training: always save final checkpoint, derive num_layers
- Always save final checkpoint after training completes
- Derive num_layers from kernel_sizes list when multiple values provided
- Add checkpoint validation in training pipeline script
- Quote shell variables when passing args to Python
Fixes issue where no checkpoint saved when epochs < checkpoint_every.
Co-Authored-By: Claude Sonnet 4.5 <noreply@anthropic.com>
Diffstat (limited to 'training')
| -rwxr-xr-x | training/train_cnn_v2.py | 22 |
1 files changed, 22 insertions, 0 deletions
diff --git a/training/train_cnn_v2.py b/training/train_cnn_v2.py index 134a5ae..d80e3a5 100755 --- a/training/train_cnn_v2.py +++ b/training/train_cnn_v2.py @@ -329,6 +329,9 @@ def train(args): kernel_sizes = [int(k) for k in args.kernel_sizes.split(',')] if len(kernel_sizes) == 1: kernel_sizes = kernel_sizes * args.num_layers + else: + # When multiple kernel sizes provided, derive num_layers from list length + args.num_layers = len(kernel_sizes) # Create model model = CNNv2(kernel_sizes=kernel_sizes, num_layers=args.num_layers).to(device) @@ -397,6 +400,25 @@ def train(args): }, checkpoint_path) print(f" → Saved checkpoint: {checkpoint_path}") + # Always save final checkpoint + print() # Newline after training + final_checkpoint = Path(args.checkpoint_dir) / f"checkpoint_epoch_{args.epochs}.pth" + final_checkpoint.parent.mkdir(parents=True, exist_ok=True) + torch.save({ + 'epoch': args.epochs, + 'model_state_dict': model.state_dict(), + 'optimizer_state_dict': optimizer.state_dict(), + 'loss': avg_loss, + 'config': { + 'kernel_sizes': kernel_sizes, + 'num_layers': args.num_layers, + 'mip_level': args.mip_level, + 'grayscale_loss': args.grayscale_loss, + 'features': ['p0', 'p1', 'p2', 'p3', 'uv.x', 'uv.y', 'sin20_y', 'bias'] + } + }, final_checkpoint) + print(f" → Saved final checkpoint: {final_checkpoint}") + print(f"\nTraining complete! Total time: {time.time() - start_time:.1f}s") return model |
