diff options
| author | skal <pascal.massimino@gmail.com> | 2026-02-10 16:44:39 +0100 |
|---|---|---|
| committer | skal <pascal.massimino@gmail.com> | 2026-02-10 16:44:39 +0100 |
| commit | 61104d5b9e1774c11f0dba3b6d6018dabc2bce8f (patch) | |
| tree | 882e642721984cc921cbe5678fe7905721a2ad40 /workspaces/main/workspace.cfg | |
| parent | 3942653de11542acc4892470243a8a6bf8d5c4f7 (diff) | |
feat: CNN RGBD→grayscale with 7-channel augmented input
Upgrade CNN architecture to process RGBD input, output grayscale, with
7-channel layer inputs (RGBD + UV coords + grayscale).
Architecture changes:
- Inner layers: Conv2d(7→4) output RGBD
- Final layer: Conv2d(7→1) output grayscale
- All inputs normalized to [-1,1] for tanh activation
- Removed CoordConv2d in favor of unified 7-channel input
Training (train_cnn.py):
- SimpleCNN: 7→4 (inner), 7→1 (final) architecture
- Forward: Normalize RGBD/coords/gray to [-1,1]
- Weight export: array<array<f32, 8>, 36> (inner), array<f32, 8>, 9> (final)
- Dataset: Load RGBA (RGBD) input
Shaders (cnn_conv3x3.wgsl):
- Added cnn_conv3x3_7to4: 7-channel input → RGBD output
- Added cnn_conv3x3_7to1: 7-channel input → grayscale output
- Both normalize inputs and use flattened weight arrays
Documentation:
- CNN_EFFECT.md: Updated architecture, training, weight format
- CNN_RGBD_GRAYSCALE_SUMMARY.md: Implementation summary
- HOWTO.md: Added training command example
Next: Train with RGBD input data
Co-Authored-By: Claude Sonnet 4.5 <noreply@anthropic.com>
Diffstat (limited to 'workspaces/main/workspace.cfg')
0 files changed, 0 insertions, 0 deletions
