summaryrefslogtreecommitdiff
path: root/workspaces/main
diff options
context:
space:
mode:
authorskal <pascal.massimino@gmail.com>2026-02-10 16:44:39 +0100
committerskal <pascal.massimino@gmail.com>2026-02-10 16:44:39 +0100
commit61104d5b9e1774c11f0dba3b6d6018dabc2bce8f (patch)
tree882e642721984cc921cbe5678fe7905721a2ad40 /workspaces/main
parent3942653de11542acc4892470243a8a6bf8d5c4f7 (diff)
feat: CNN RGBD→grayscale with 7-channel augmented input
Upgrade CNN architecture to process RGBD input, output grayscale, with 7-channel layer inputs (RGBD + UV coords + grayscale). Architecture changes: - Inner layers: Conv2d(7→4) output RGBD - Final layer: Conv2d(7→1) output grayscale - All inputs normalized to [-1,1] for tanh activation - Removed CoordConv2d in favor of unified 7-channel input Training (train_cnn.py): - SimpleCNN: 7→4 (inner), 7→1 (final) architecture - Forward: Normalize RGBD/coords/gray to [-1,1] - Weight export: array<array<f32, 8>, 36> (inner), array<f32, 8>, 9> (final) - Dataset: Load RGBA (RGBD) input Shaders (cnn_conv3x3.wgsl): - Added cnn_conv3x3_7to4: 7-channel input → RGBD output - Added cnn_conv3x3_7to1: 7-channel input → grayscale output - Both normalize inputs and use flattened weight arrays Documentation: - CNN_EFFECT.md: Updated architecture, training, weight format - CNN_RGBD_GRAYSCALE_SUMMARY.md: Implementation summary - HOWTO.md: Added training command example Next: Train with RGBD input data Co-Authored-By: Claude Sonnet 4.5 <noreply@anthropic.com>
Diffstat (limited to 'workspaces/main')
-rw-r--r--workspaces/main/shaders/cnn/cnn_conv3x3.wgsl100
1 files changed, 100 insertions, 0 deletions
diff --git a/workspaces/main/shaders/cnn/cnn_conv3x3.wgsl b/workspaces/main/shaders/cnn/cnn_conv3x3.wgsl
index 168c9e2..df58b4d 100644
--- a/workspaces/main/shaders/cnn/cnn_conv3x3.wgsl
+++ b/workspaces/main/shaders/cnn/cnn_conv3x3.wgsl
@@ -51,3 +51,103 @@ fn cnn_conv3x3_with_coord(
return sum;
}
+
+// Inner layers: 7→4 channels (RGBD output)
+// weights: array<array<f32, 8>, 36> (9 positions × 4 channels, each with 7 weights + bias)
+fn cnn_conv3x3_7to4(
+ tex: texture_2d<f32>,
+ samp: sampler,
+ uv: vec2<f32>,
+ resolution: vec2<f32>,
+ original: vec4<f32>,
+ weights: array<array<f32, 8>, 36>
+) -> vec4<f32> {
+ let step = 1.0 / resolution;
+
+ // Compute grayscale from original and normalize to [-1,1]
+ let gray_01 = 0.2126*original.r + 0.7152*original.g + 0.0722*original.b;
+ let gray = (gray_01 - 0.5) * 2.0;
+
+ // Normalize UV to [-1,1]
+ let uv_norm = (uv - 0.5) * 2.0;
+
+ var sum = vec4<f32>(0.0);
+
+ var pos = 0;
+ for (var dy = -1; dy <= 1; dy++) {
+ for (var dx = -1; dx <= 1; dx++) {
+ let offset = vec2<f32>(f32(dx), f32(dy)) * step;
+ let rgbd_01 = textureSample(tex, samp, uv + offset);
+
+ // Normalize RGBD to [-1,1]
+ let rgbd = (rgbd_01 - 0.5) * 2.0;
+
+ // 7-channel input: [R,G,B,D, uv.x, uv.y, gray] all in [-1,1]
+ let inputs = array<f32, 7>(
+ rgbd.r, rgbd.g, rgbd.b, rgbd.a,
+ uv_norm.x, uv_norm.y, gray
+ );
+
+ // Accumulate for each output channel (RGBD)
+ for (var out_c = 0; out_c < 4; out_c++) {
+ let idx = pos * 4 + out_c;
+ var channel_sum = weights[idx][7]; // Bias (8th element)
+ for (var in_c = 0; in_c < 7; in_c++) {
+ channel_sum += weights[idx][in_c] * inputs[in_c];
+ }
+ sum[out_c] += channel_sum;
+ }
+
+ pos++;
+ }
+ }
+
+ return sum; // Output in [-1,1] range
+}
+
+// Final layer: 7→1 channel (scalar output)
+// weights: array<array<f32, 8>, 9> (9 positions, each with 7 weights + bias)
+fn cnn_conv3x3_7to1(
+ tex: texture_2d<f32>,
+ samp: sampler,
+ uv: vec2<f32>,
+ resolution: vec2<f32>,
+ original: vec4<f32>,
+ weights: array<array<f32, 8>, 9>
+) -> f32 {
+ let step = 1.0 / resolution;
+
+ // Normalize grayscale to [-1,1]
+ let gray_01 = 0.2126*original.r + 0.7152*original.g + 0.0722*original.b;
+ let gray = (gray_01 - 0.5) * 2.0;
+
+ // Normalize UV to [-1,1]
+ let uv_norm = (uv - 0.5) * 2.0;
+
+ var sum = 0.0;
+
+ var pos = 0;
+ for (var dy = -1; dy <= 1; dy++) {
+ for (var dx = -1; dx <= 1; dx++) {
+ let offset = vec2<f32>(f32(dx), f32(dy)) * step;
+ let rgbd_01 = textureSample(tex, samp, uv + offset);
+
+ // Normalize RGBD to [-1,1]
+ let rgbd = (rgbd_01 - 0.5) * 2.0;
+
+ // 7-channel input all in [-1,1]
+ sum += weights[pos][0] * rgbd.r;
+ sum += weights[pos][1] * rgbd.g;
+ sum += weights[pos][2] * rgbd.b;
+ sum += weights[pos][3] * rgbd.a;
+ sum += weights[pos][4] * uv_norm.x;
+ sum += weights[pos][5] * uv_norm.y;
+ sum += weights[pos][6] * gray;
+ sum += weights[pos][7]; // Bias
+
+ pos++;
+ }
+ }
+
+ return sum; // Output in [-1,1], needs denormalization
+}