summaryrefslogtreecommitdiff
path: root/workspaces/main/shaders/cnn/cnn_weights_generated.wgsl
diff options
context:
space:
mode:
authorskal <pascal.massimino@gmail.com>2026-02-10 08:01:25 +0100
committerskal <pascal.massimino@gmail.com>2026-02-10 08:01:25 +0100
commit47397444b30b0f461b1633297a68300179586fda (patch)
treeb84a59b6a6595b609fe71980e81b99cc1b180693 /workspaces/main/shaders/cnn/cnn_weights_generated.wgsl
parentc51c146da9590845b864cbba3a7317c5b5bed56a (diff)
feat: Add CNN post-processing effect with modular WGSL architecture
Implements multi-layer convolutional neural network shader for stylized post-processing of 3D rendered scenes: **Core Components:** - CNNEffect: C++ effect class with single-layer rendering (expandable to multi-pass) - Modular WGSL snippets: cnn_activation, cnn_conv3x3/5x5/7x7, cnn_weights_generated - Placeholder identity-like weights for initial testing (to be replaced by trained weights) **Architecture:** - Flexible kernel sizes (3×3, 5×5, 7×7) via separate snippet files - ShaderComposer integration (#include resolution) - Residual connections (input + processed output) - Supports parallel convolutions (design ready, single conv implemented) **Size Impact:** - ~3-4 KB shader code (snippets + main shader) - ~2-4 KB weights (depends on network architecture when trained) - Total: ~5-8 KB (acceptable for 64k demo) **Testing:** - CNNEffect added to test_demo_effects.cc - 36/36 tests passing (100%) **Next Steps:** - Training script (scripts/train_cnn.py) to generate real weights - Multi-layer rendering with ping-pong textures - Weight quantization for size optimization handoff(Claude): CNN effect foundation complete, ready for training integration
Diffstat (limited to 'workspaces/main/shaders/cnn/cnn_weights_generated.wgsl')
-rw-r--r--workspaces/main/shaders/cnn/cnn_weights_generated.wgsl17
1 files changed, 17 insertions, 0 deletions
diff --git a/workspaces/main/shaders/cnn/cnn_weights_generated.wgsl b/workspaces/main/shaders/cnn/cnn_weights_generated.wgsl
new file mode 100644
index 0000000..98c17ff
--- /dev/null
+++ b/workspaces/main/shaders/cnn/cnn_weights_generated.wgsl
@@ -0,0 +1,17 @@
+// Generated CNN weights and biases
+// DO NOT EDIT MANUALLY - regenerate with scripts/train_cnn.py
+
+// Placeholder identity-like weights for initial testing
+// Layer 0: 3x3 convolution
+const weights_layer0: array<mat4x4<f32>, 9> = array(
+ mat4x4<f32>(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0),
+ mat4x4<f32>(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0),
+ mat4x4<f32>(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0),
+ mat4x4<f32>(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0),
+ mat4x4<f32>(1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0),
+ mat4x4<f32>(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0),
+ mat4x4<f32>(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0),
+ mat4x4<f32>(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0),
+ mat4x4<f32>(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
+);
+const bias_layer0 = vec4<f32>(0.0, 0.0, 0.0, 0.0);