summaryrefslogtreecommitdiff
path: root/workspaces/main/shaders/cnn/cnn_layer.wgsl
diff options
context:
space:
mode:
authorskal <pascal.massimino@gmail.com>2026-02-10 08:01:25 +0100
committerskal <pascal.massimino@gmail.com>2026-02-10 08:01:25 +0100
commit47397444b30b0f461b1633297a68300179586fda (patch)
treeb84a59b6a6595b609fe71980e81b99cc1b180693 /workspaces/main/shaders/cnn/cnn_layer.wgsl
parentc51c146da9590845b864cbba3a7317c5b5bed56a (diff)
feat: Add CNN post-processing effect with modular WGSL architecture
Implements multi-layer convolutional neural network shader for stylized post-processing of 3D rendered scenes: **Core Components:** - CNNEffect: C++ effect class with single-layer rendering (expandable to multi-pass) - Modular WGSL snippets: cnn_activation, cnn_conv3x3/5x5/7x7, cnn_weights_generated - Placeholder identity-like weights for initial testing (to be replaced by trained weights) **Architecture:** - Flexible kernel sizes (3×3, 5×5, 7×7) via separate snippet files - ShaderComposer integration (#include resolution) - Residual connections (input + processed output) - Supports parallel convolutions (design ready, single conv implemented) **Size Impact:** - ~3-4 KB shader code (snippets + main shader) - ~2-4 KB weights (depends on network architecture when trained) - Total: ~5-8 KB (acceptable for 64k demo) **Testing:** - CNNEffect added to test_demo_effects.cc - 36/36 tests passing (100%) **Next Steps:** - Training script (scripts/train_cnn.py) to generate real weights - Multi-layer rendering with ping-pong textures - Weight quantization for size optimization handoff(Claude): CNN effect foundation complete, ready for training integration
Diffstat (limited to 'workspaces/main/shaders/cnn/cnn_layer.wgsl')
-rw-r--r--workspaces/main/shaders/cnn/cnn_layer.wgsl46
1 files changed, 46 insertions, 0 deletions
diff --git a/workspaces/main/shaders/cnn/cnn_layer.wgsl b/workspaces/main/shaders/cnn/cnn_layer.wgsl
new file mode 100644
index 0000000..e026ce8
--- /dev/null
+++ b/workspaces/main/shaders/cnn/cnn_layer.wgsl
@@ -0,0 +1,46 @@
+// CNN layer shader - uses modular convolution snippets
+// Supports multi-pass rendering with residual connections
+
+@group(0) @binding(0) var smplr: sampler;
+@group(0) @binding(1) var txt: texture_2d<f32>;
+
+#include "common_uniforms"
+#include "cnn_activation"
+#include "cnn_conv3x3"
+#include "cnn_weights_generated"
+
+struct CNNLayerParams {
+ layer_index: i32,
+ use_residual: i32,
+ _pad: vec2<f32>,
+};
+
+@group(0) @binding(2) var<uniform> uniforms: CommonUniforms;
+@group(0) @binding(3) var<uniform> params: CNNLayerParams;
+
+@vertex fn vs_main(@builtin(vertex_index) i: u32) -> @builtin(position) vec4<f32> {
+ var pos = array<vec2<f32>, 3>(
+ vec2<f32>(-1.0, -1.0), vec2<f32>(3.0, -1.0), vec2<f32>(-1.0, 3.0)
+ );
+ return vec4<f32>(pos[i], 0.0, 1.0);
+}
+
+@fragment fn fs_main(@builtin(position) p: vec4<f32>) -> @location(0) vec4<f32> {
+ let uv = p.xy / uniforms.resolution;
+ var result = vec4<f32>(0.0);
+
+ // Single layer for now (layer 0)
+ if (params.layer_index == 0) {
+ result = cnn_conv3x3(txt, smplr, uv, uniforms.resolution,
+ weights_layer0, bias_layer0);
+ result = cnn_tanh(result);
+ }
+
+ // Residual connection
+ if (params.use_residual != 0) {
+ let input = textureSample(txt, smplr, uv);
+ result = input + result * 0.3;
+ }
+
+ return result;
+}