summaryrefslogtreecommitdiff
path: root/workspaces/main/shaders/cnn/cnn_conv7x7.wgsl
diff options
context:
space:
mode:
authorskal <pascal.massimino@gmail.com>2026-02-10 08:01:25 +0100
committerskal <pascal.massimino@gmail.com>2026-02-10 08:01:25 +0100
commit47397444b30b0f461b1633297a68300179586fda (patch)
treeb84a59b6a6595b609fe71980e81b99cc1b180693 /workspaces/main/shaders/cnn/cnn_conv7x7.wgsl
parentc51c146da9590845b864cbba3a7317c5b5bed56a (diff)
feat: Add CNN post-processing effect with modular WGSL architecture
Implements multi-layer convolutional neural network shader for stylized post-processing of 3D rendered scenes: **Core Components:** - CNNEffect: C++ effect class with single-layer rendering (expandable to multi-pass) - Modular WGSL snippets: cnn_activation, cnn_conv3x3/5x5/7x7, cnn_weights_generated - Placeholder identity-like weights for initial testing (to be replaced by trained weights) **Architecture:** - Flexible kernel sizes (3×3, 5×5, 7×7) via separate snippet files - ShaderComposer integration (#include resolution) - Residual connections (input + processed output) - Supports parallel convolutions (design ready, single conv implemented) **Size Impact:** - ~3-4 KB shader code (snippets + main shader) - ~2-4 KB weights (depends on network architecture when trained) - Total: ~5-8 KB (acceptable for 64k demo) **Testing:** - CNNEffect added to test_demo_effects.cc - 36/36 tests passing (100%) **Next Steps:** - Training script (scripts/train_cnn.py) to generate real weights - Multi-layer rendering with ping-pong textures - Weight quantization for size optimization handoff(Claude): CNN effect foundation complete, ready for training integration
Diffstat (limited to 'workspaces/main/shaders/cnn/cnn_conv7x7.wgsl')
-rw-r--r--workspaces/main/shaders/cnn/cnn_conv7x7.wgsl26
1 files changed, 26 insertions, 0 deletions
diff --git a/workspaces/main/shaders/cnn/cnn_conv7x7.wgsl b/workspaces/main/shaders/cnn/cnn_conv7x7.wgsl
new file mode 100644
index 0000000..ba28d64
--- /dev/null
+++ b/workspaces/main/shaders/cnn/cnn_conv7x7.wgsl
@@ -0,0 +1,26 @@
+// 7x7 convolution with 49 samples
+// Applies mat4 weights per sample
+
+fn cnn_conv7x7(
+ tex: texture_2d<f32>,
+ samp: sampler,
+ uv: vec2<f32>,
+ resolution: vec2<f32>,
+ weights: array<mat4x4<f32>, 49>,
+ bias: vec4<f32>
+) -> vec4<f32> {
+ let step = 1.0 / resolution;
+ var sum = bias;
+ var idx = 0;
+
+ for (var dy = -3; dy <= 3; dy++) {
+ for (var dx = -3; dx <= 3; dx++) {
+ let offset = vec2<f32>(f32(dx), f32(dy)) * step;
+ let sample = textureSample(tex, samp, uv + offset);
+ sum += weights[idx] * sample;
+ idx++;
+ }
+ }
+
+ return sum;
+}