diff options
| author | skal <pascal.massimino@gmail.com> | 2026-02-18 14:00:18 +0100 |
|---|---|---|
| committer | skal <pascal.massimino@gmail.com> | 2026-02-18 14:00:18 +0100 |
| commit | a9a60dfd2df938ef1e3ecc0a06d3d50cc329ef30 (patch) | |
| tree | d4bfa5597eda60db9c0ea3ad20c53c39e228819a /tools/mq_editor/mq_extract.js | |
| parent | c3c1011cb6bf9bca28736b89049d76875a031ebe (diff) | |
feat(mq_editor): Implement phase-coherent partial tracking
Implements a more robust partial tracking algorithm by using phase
coherence to validate and link spectral peaks across frames. This
significantly improves tracking accuracy, especially for crossing or
closely-spaced partials.
Key changes:
- : The STFT cache now computes and stores the phase for each
frequency bin alongside the magnitude.
- : The peak detection logic now interpolates the
phase for sub-bin accuracy.
- : The core tracking algorithm was replaced with a
phase-aware model. It predicts the expected phase for a partial in
the next frame and uses a cost function combining both frequency and
phase error to find the best match.
This implementation follows the design outlined in the new document
.
handoff(Gemini): Phase prediction implemented. Further tuning of the cost function weights may be beneficial.
Diffstat (limited to 'tools/mq_editor/mq_extract.js')
| -rw-r--r-- | tools/mq_editor/mq_extract.js | 107 |
1 files changed, 82 insertions, 25 deletions
diff --git a/tools/mq_editor/mq_extract.js b/tools/mq_editor/mq_extract.js index 97fbb00..a530960 100644 --- a/tools/mq_editor/mq_extract.js +++ b/tools/mq_editor/mq_extract.js @@ -9,12 +9,13 @@ function extractPartials(params, stftCache) { const frames = []; for (let i = 0; i < numFrames; ++i) { const cachedFrame = stftCache.getFrameAtIndex(i); - const squaredAmp = stftCache.getSquaredAmplitude(cachedFrame.time); - const peaks = detectPeaks(squaredAmp, fftSize, sampleRate, threshold, freqWeight, prominence); + const squaredAmp = cachedFrame.squaredAmplitude; + const phase = cachedFrame.phase; + const peaks = detectPeaks(squaredAmp, phase, fftSize, sampleRate, threshold, freqWeight, prominence); frames.push({time: cachedFrame.time, peaks}); } - const partials = trackPartials(frames); + const partials = trackPartials(frames, params); // Second pass: extend partials leftward to recover onset frames expandPartialsLeft(partials, frames); @@ -27,10 +28,27 @@ function extractPartials(params, stftCache) { return {partials, frames}; } +// Helper to interpolate phase via quadratic formula on unwrapped neighbors. +// This provides a more accurate phase estimate at the sub-bin peak location. +function phaseInterp(p_minus, p_center, p_plus, p_frac) { + // unwrap neighbors relative to center + let dp_minus = p_minus - p_center; + while (dp_minus > Math.PI) dp_minus -= 2 * Math.PI; + while (dp_minus < -Math.PI) dp_minus += 2 * Math.PI; + + let dp_plus = p_plus - p_center; + while (dp_plus > Math.PI) dp_plus -= 2 * Math.PI; + while (dp_plus < -Math.PI) dp_plus += 2 * Math.PI; + + const p_interp = p_center + (dp_plus - dp_minus) * p_frac * 0.5 + (dp_plus + dp_minus) * p_frac * p_frac; + return p_interp; +} + // Detect spectral peaks via local maxima + parabolic interpolation // squaredAmp: pre-computed re*re+im*im per bin +// phase: pre-computed atan2(im,re) per bin // freqWeight: if true, weight by f before peak detection (f * Power(f)) -function detectPeaks(squaredAmp, fftSize, sampleRate, thresholdDB, freqWeight, prominenceDB = 0) { +function detectPeaks(squaredAmp, phase, fftSize, sampleRate, thresholdDB, freqWeight, prominenceDB = 0) { const mag = new Float32Array(fftSize / 2); const binHz = sampleRate / fftSize; for (let i = 0; i < fftSize / 2; ++i) { @@ -62,23 +80,31 @@ function detectPeaks(squaredAmp, fftSize, sampleRate, thresholdDB, freqWeight, p if (mag[i] - valley < prominenceDB) continue; } - // Parabolic interpolation for sub-bin accuracy + // Parabolic interpolation for sub-bin accuracy on frequency, amplitude, and phase const alpha = mag[i-1]; const beta = mag[i]; const gamma = mag[i+1]; const p = 0.5 * (alpha - gamma) / (alpha - 2*beta + gamma); + + const p_phase = phaseInterp(phase[i-1], phase[i], phase[i+1], p); const freq = (i + p) * sampleRate / fftSize; const ampDB = beta - 0.25 * (alpha - gamma) * p; - peaks.push({freq, amp: Math.pow(10, ampDB / 20)}); + peaks.push({freq, amp: Math.pow(10, ampDB / 20), phase: p_phase}); } } return peaks; } -// Track partials across frames (birth/death/continuation) -function trackPartials(frames) { +// Helper to compute shortest angle difference (e.g., between -pi and pi) +function normalizeAngle(angle) { + return angle - 2 * Math.PI * Math.floor((angle + Math.PI) / (2 * Math.PI)); +} + +// Track partials across frames using phase coherence for robust matching. +function trackPartials(frames, params) { + const { sampleRate, hopSize } = params; const partials = []; const activePartials = []; const candidates = []; // pre-birth @@ -89,22 +115,37 @@ function trackPartials(frames) { const deathAge = 5; // frames without match before death const minLength = 10; // frames required to keep partial + // Weight phase error heavily in cost function, scaled by frequency. + // This makes phase deviation more significant for high-frequency partials. + const phaseErrorWeight = 2.0; + for (const frame of frames) { const matched = new Set(); - // Continue active partials + // --- Continue active partials --- for (const partial of activePartials) { const lastFreq = partial.freqs[partial.freqs.length - 1]; + const lastPhase = partial.phases[partial.phases.length - 1]; const velocity = partial.velocity || 0; - const predicted = lastFreq + velocity; + const predictedFreq = lastFreq + velocity; - const tol = Math.max(lastFreq * trackingRatio, minTrackingHz); - let bestIdx = -1, bestDist = Infinity; + // Predict phase for the current frame based on the last frame's frequency. + const phaseAdvance = 2 * Math.PI * lastFreq * hopSize / sampleRate; + const predictedPhase = lastPhase + phaseAdvance; + + const tol = Math.max(predictedFreq * trackingRatio, minTrackingHz); + let bestIdx = -1, bestCost = Infinity; + // Find the peak in the new frame with the lowest cost (freq + phase error). for (let i = 0; i < frame.peaks.length; ++i) { if (matched.has(i)) continue; - const dist = Math.abs(frame.peaks[i].freq - predicted); - if (dist < tol && dist < bestDist) { bestDist = dist; bestIdx = i; } + const pk = frame.peaks[i]; + const freqError = Math.abs(pk.freq - predictedFreq); + if (freqError > tol) continue; + + const phaseError = Math.abs(normalizeAngle(pk.phase - predictedPhase)); + const cost = freqError + phaseErrorWeight * phaseError * predictedFreq; + if (cost < bestCost) { bestCost = cost; bestIdx = i; } } if (bestIdx >= 0) { @@ -112,6 +153,7 @@ function trackPartials(frames) { partial.times.push(frame.time); partial.freqs.push(pk.freq); partial.amps.push(pk.amp); + partial.phases.push(pk.phase); partial.age = 0; partial.velocity = pk.freq - lastFreq; matched.add(bestIdx); @@ -120,20 +162,29 @@ function trackPartials(frames) { } } - // Advance candidates + // --- Advance candidates --- for (let i = candidates.length - 1; i >= 0; --i) { const cand = candidates[i]; const lastFreq = cand.freqs[cand.freqs.length - 1]; + const lastPhase = cand.phases[cand.phases.length - 1]; const velocity = cand.velocity || 0; - const predicted = lastFreq + velocity; + const predictedFreq = lastFreq + velocity; - const tol = Math.max(lastFreq * trackingRatio, minTrackingHz); - let bestIdx = -1, bestDist = Infinity; + const phaseAdvance = 2 * Math.PI * lastFreq * hopSize / sampleRate; + const predictedPhase = lastPhase + phaseAdvance; + + const tol = Math.max(predictedFreq * trackingRatio, minTrackingHz); + let bestIdx = -1, bestCost = Infinity; for (let j = 0; j < frame.peaks.length; ++j) { if (matched.has(j)) continue; - const dist = Math.abs(frame.peaks[j].freq - predicted); - if (dist < tol && dist < bestDist) { bestDist = dist; bestIdx = j; } + const pk = frame.peaks[j]; + const freqError = Math.abs(pk.freq - predictedFreq); + if (freqError > tol) continue; + + const phaseError = Math.abs(normalizeAngle(pk.phase - predictedPhase)); + const cost = freqError + phaseErrorWeight * phaseError * predictedFreq; + if (cost < bestCost) { bestCost = cost; bestIdx = j; } } if (bestIdx >= 0) { @@ -141,31 +192,34 @@ function trackPartials(frames) { cand.times.push(frame.time); cand.freqs.push(pk.freq); cand.amps.push(pk.amp); + cand.phases.push(pk.phase); cand.velocity = pk.freq - lastFreq; matched.add(bestIdx); + // "graduate" a candidate to a full partial if (cand.times.length >= birthPersistence) { activePartials.push(cand); candidates.splice(i, 1); } } else { - candidates.splice(i, 1); + candidates.splice(i, 1); // kill candidate } } - // Spawn candidates from unmatched peaks + // --- Spawn new candidates from unmatched peaks --- for (let i = 0; i < frame.peaks.length; ++i) { if (matched.has(i)) continue; const pk = frame.peaks[i]; candidates.push({ times: [frame.time], freqs: [pk.freq], - amps: [pk.amp], + amps: [pk.amp], + phases: [pk.phase], age: 0, velocity: 0 }); } - // Kill aged-out partials + // --- Kill aged-out partials --- for (let i = activePartials.length - 1; i >= 0; --i) { if (activePartials[i].age > deathAge) { if (activePartials[i].times.length >= minLength) partials.push(activePartials[i]); @@ -174,7 +228,7 @@ function trackPartials(frames) { } } - // Collect remaining active partials + // --- Collect remaining active partials --- for (const partial of activePartials) { if (partial.times.length >= minLength) partials.push(partial); } @@ -193,6 +247,8 @@ function expandPartialsLeft(partials, frames) { for (let i = 0; i < frames.length; ++i) timeToIdx.set(frames[i].time, i); for (const partial of partials) { + if (!partial.phases) partial.phases = []; // Ensure old partials have phase array + let startIdx = timeToIdx.get(partial.times[0]); if (startIdx == null || startIdx === 0) continue; @@ -213,6 +269,7 @@ function expandPartialsLeft(partials, frames) { partial.times.unshift(frame.time); partial.freqs.unshift(pk.freq); partial.amps.unshift(pk.amp); + partial.phases.unshift(pk.phase); } } } |
