summaryrefslogtreecommitdiff
path: root/tools/mq_editor/mq_extract.js
blob: 97fbb0023f780306a9ba3edd2bea78eaeb2cec1f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
// MQ Extraction Algorithm
// McAulay-Quatieri sinusoidal analysis

// Extract partials from audio buffer
function extractPartials(params, stftCache) {
  const {fftSize, threshold, sampleRate, freqWeight, prominence} = params;
  const numFrames = stftCache.getNumFrames();

  const frames = [];
  for (let i = 0; i < numFrames; ++i) {
    const cachedFrame = stftCache.getFrameAtIndex(i);
    const squaredAmp = stftCache.getSquaredAmplitude(cachedFrame.time);
    const peaks = detectPeaks(squaredAmp, fftSize, sampleRate, threshold, freqWeight, prominence);
    frames.push({time: cachedFrame.time, peaks});
  }

  const partials = trackPartials(frames);

  // Second pass: extend partials leftward to recover onset frames
  expandPartialsLeft(partials, frames);

  for (const partial of partials) {
    partial.freqCurve = fitBezier(partial.times, partial.freqs);
    partial.ampCurve = fitBezier(partial.times, partial.amps);
  }

  return {partials, frames};
}

// Detect spectral peaks via local maxima + parabolic interpolation
// squaredAmp: pre-computed re*re+im*im per bin
// freqWeight: if true, weight by f before peak detection (f * Power(f))
function detectPeaks(squaredAmp, fftSize, sampleRate, thresholdDB, freqWeight, prominenceDB = 0) {
  const mag = new Float32Array(fftSize / 2);
  const binHz = sampleRate / fftSize;
  for (let i = 0; i < fftSize / 2; ++i) {
    const w = freqWeight ? (i * binHz) : 1.0;
    mag[i] = 10 * Math.log10(Math.max(squaredAmp[i] * w, 1e-20));
  }

  const peaks = [];
  for (let i = 2; i < mag.length - 2; ++i) {
    if (mag[i] > thresholdDB &&
        mag[i] > mag[i-1] && mag[i] > mag[i-2] &&
        mag[i] > mag[i+1] && mag[i] > mag[i+2]) {

      // Check prominence if requested
      if (prominenceDB > 0) {
        let minLeft = mag[i];
        for (let k = i - 1; k >= 0; --k) {
          if (mag[k] > mag[i]) break; // Found higher peak
          if (mag[k] < minLeft) minLeft = mag[k];
        }

        let minRight = mag[i];
        for (let k = i + 1; k < mag.length; ++k) {
          if (mag[k] > mag[i]) break; // Found higher peak
          if (mag[k] < minRight) minRight = mag[k];
        }

        const valley = Math.max(minLeft, minRight);
        if (mag[i] - valley < prominenceDB) continue;
      }

      // Parabolic interpolation for sub-bin accuracy
      const alpha = mag[i-1];
      const beta  = mag[i];
      const gamma = mag[i+1];
      const p = 0.5 * (alpha - gamma) / (alpha - 2*beta + gamma);

      const freq  = (i + p) * sampleRate / fftSize;
      const ampDB = beta - 0.25 * (alpha - gamma) * p;
      peaks.push({freq, amp: Math.pow(10, ampDB / 20)});
    }
  }

  return peaks;
}

// Track partials across frames (birth/death/continuation)
function trackPartials(frames) {
  const partials        = [];
  const activePartials  = [];
  const candidates      = []; // pre-birth

  const trackingRatio   = 0.05; // 5% frequency tolerance
  const minTrackingHz   = 20;
  const birthPersistence = 3;   // frames before partial is born
  const deathAge        = 5;    // frames without match before death
  const minLength       = 10;   // frames required to keep partial

  for (const frame of frames) {
    const matched = new Set();

    // Continue active partials
    for (const partial of activePartials) {
      const lastFreq = partial.freqs[partial.freqs.length - 1];
      const velocity = partial.velocity || 0;
      const predicted = lastFreq + velocity;
      
      const tol = Math.max(lastFreq * trackingRatio, minTrackingHz);
      let bestIdx = -1, bestDist = Infinity;

      for (let i = 0; i < frame.peaks.length; ++i) {
        if (matched.has(i)) continue;
        const dist = Math.abs(frame.peaks[i].freq - predicted);
        if (dist < tol && dist < bestDist) { bestDist = dist; bestIdx = i; }
      }

      if (bestIdx >= 0) {
        const pk = frame.peaks[bestIdx];
        partial.times.push(frame.time);
        partial.freqs.push(pk.freq);
        partial.amps.push(pk.amp);
        partial.age = 0;
        partial.velocity = pk.freq - lastFreq;
        matched.add(bestIdx);
      } else {
        partial.age++;
      }
    }

    // Advance candidates
    for (let i = candidates.length - 1; i >= 0; --i) {
      const cand = candidates[i];
      const lastFreq = cand.freqs[cand.freqs.length - 1];
      const velocity = cand.velocity || 0;
      const predicted = lastFreq + velocity;

      const tol = Math.max(lastFreq * trackingRatio, minTrackingHz);
      let bestIdx = -1, bestDist = Infinity;

      for (let j = 0; j < frame.peaks.length; ++j) {
        if (matched.has(j)) continue;
        const dist = Math.abs(frame.peaks[j].freq - predicted);
        if (dist < tol && dist < bestDist) { bestDist = dist; bestIdx = j; }
      }

      if (bestIdx >= 0) {
        const pk = frame.peaks[bestIdx];
        cand.times.push(frame.time);
        cand.freqs.push(pk.freq);
        cand.amps.push(pk.amp);
        cand.velocity = pk.freq - lastFreq;
        matched.add(bestIdx);
        if (cand.times.length >= birthPersistence) {
          activePartials.push(cand);
          candidates.splice(i, 1);
        }
      } else {
        candidates.splice(i, 1);
      }
    }

    // Spawn candidates from unmatched peaks
    for (let i = 0; i < frame.peaks.length; ++i) {
      if (matched.has(i)) continue;
      const pk = frame.peaks[i];
      candidates.push({
        times: [frame.time], 
        freqs: [pk.freq], 
        amps: [pk.amp], 
        age: 0,
        velocity: 0
      });
    }

    // Kill aged-out partials
    for (let i = activePartials.length - 1; i >= 0; --i) {
      if (activePartials[i].age > deathAge) {
        if (activePartials[i].times.length >= minLength) partials.push(activePartials[i]);
        activePartials.splice(i, 1);
      }
    }
  }

  // Collect remaining active partials
  for (const partial of activePartials) {
    if (partial.times.length >= minLength) partials.push(partial);
  }

  return partials;
}

// Second pass: extend each partial leftward to recover onset frames missed
// by the birthPersistence requirement in the forward pass.
function expandPartialsLeft(partials, frames) {
  const trackingRatio = 0.05;
  const minTrackingHz = 20;

  // Build time → frame index map
  const timeToIdx = new Map();
  for (let i = 0; i < frames.length; ++i) timeToIdx.set(frames[i].time, i);

  for (const partial of partials) {
    let startIdx = timeToIdx.get(partial.times[0]);
    if (startIdx == null || startIdx === 0) continue;

    for (let i = startIdx - 1; i >= 0; --i) {
      const frame = frames[i];
      const refFreq = partial.freqs[0];
      const tol = Math.max(refFreq * trackingRatio, minTrackingHz);

      let bestIdx = -1, bestDist = Infinity;
      for (let j = 0; j < frame.peaks.length; ++j) {
        const dist = Math.abs(frame.peaks[j].freq - refFreq);
        if (dist < tol && dist < bestDist) { bestDist = dist; bestIdx = j; }
      }

      if (bestIdx < 0) break;

      const pk = frame.peaks[bestIdx];
      partial.times.unshift(frame.time);
      partial.freqs.unshift(pk.freq);
      partial.amps.unshift(pk.amp);
    }
  }
}

// Autodetect spread_above / spread_below from the spectrogram.
// For each (subsampled) STFT frame within the partial, measures the
// half-power (-3dB) width of the spectral peak above and below the center.
// spread = half_bandwidth / f0  (fractional).
function autodetectSpread(partial, stftCache, fftSize, sampleRate) {
  const curve = partial.freqCurve;
  if (!curve || !stftCache) return {spread_above: 0.02, spread_below: 0.02};

  const numFrames = stftCache.getNumFrames();
  const binHz    = sampleRate / fftSize;
  const halfBins = fftSize / 2;

  let sumAbove = 0, sumBelow = 0, count = 0;

  const STEP = 4;
  for (let fi = 0; fi < numFrames; fi += STEP) {
    const frame = stftCache.getFrameAtIndex(fi);
    if (!frame) continue;
    const t = frame.time;
    if (t < curve.t0 || t > curve.t3) continue;

    const f0 = evalBezier(curve, t);
    if (f0 <= 0) continue;

    const sq = frame.squaredAmplitude;
    if (!sq) continue;

    // Find peak bin in ±10% window
    const binCenter = f0 / binHz;
    const searchBins = Math.max(3, Math.round(f0 * 0.10 / binHz));
    const binLo = Math.max(1, Math.floor(binCenter - searchBins));
    const binHi = Math.min(halfBins - 2, Math.ceil(binCenter + searchBins));

    let peakBin = binLo, peakVal = sq[binLo];
    for (let b = binLo + 1; b <= binHi; ++b) {
      if (sq[b] > peakVal) { peakVal = sq[b]; peakBin = b; }
    }

    const halfPower = peakVal * 0.5;  // -3dB in power

    // Walk above peak until half-power, interpolate crossing
    let aboveBin = peakBin;
    while (aboveBin < halfBins - 1 && sq[aboveBin] > halfPower) ++aboveBin;
    const tA = aboveBin > peakBin && sq[aboveBin - 1] !== sq[aboveBin]
      ? (halfPower - sq[aboveBin - 1]) / (sq[aboveBin] - sq[aboveBin - 1])
      : 0;
    const widthAbove = (aboveBin - 1 + tA - peakBin) * binHz;

    // Walk below peak until half-power, interpolate crossing
    let belowBin = peakBin;
    while (belowBin > 1 && sq[belowBin] > halfPower) --belowBin;
    const tB = belowBin < peakBin && sq[belowBin + 1] !== sq[belowBin]
      ? (halfPower - sq[belowBin + 1]) / (sq[belowBin] - sq[belowBin + 1])
      : 0;
    const widthBelow = (peakBin - belowBin - 1 + tB) * binHz;

    sumAbove += (widthAbove / f0) * (widthAbove / f0);
    sumBelow += (widthBelow / f0) * (widthBelow / f0);
    ++count;
  }

  const spread_above = count > 0 ? Math.sqrt(sumAbove / count) : 0.01;
  const spread_below = count > 0 ? Math.sqrt(sumBelow / count) : 0.01;
  return {spread_above, spread_below};
}

// Fit cubic bezier to trajectory using least-squares for inner control points
function fitBezier(times, values) {
  const n = times.length - 1;
  const t0 = times[0], v0 = values[0];
  const t3 = times[n], v3 = values[n];
  const dt = t3 - t0;

  if (dt <= 1e-9 || n < 2) {
    // Linear fallback for too few points or zero duration
    return {t0, v0, t1: t0 + dt / 3, v1: v0 + (v3 - v0) / 3, t2: t0 + 2 * dt / 3, v2: v0 + 2 * (v3 - v0) / 3, t3, v3};
  }

  // Least squares solve for v1, v2
  // Bezier: B(u) = (1-u)^3*v0 + 3(1-u)^2*u*v1 + 3(1-u)*u^2*v2 + u^3*v3
  // Target_i = val_i - (1-u)^3*v0 - u^3*v3
  // Model_i = A_i*v1 + B_i*v2
  // A_i = 3(1-u)^2*u
  // B_i = 3(1-u)*u^2

  let sA2 = 0, sB2 = 0, sAB = 0, sAT = 0, sBT = 0;

  for (let i = 0; i <= n; ++i) {
    const u = (times[i] - t0) / dt;
    const u2 = u * u;
    const u3 = u2 * u;
    const invU = 1.0 - u;
    const invU2 = invU * invU;
    const invU3 = invU2 * invU;

    const A = 3 * invU2 * u;
    const B = 3 * invU * u2;
    const target = values[i] - (invU3 * v0 + u3 * v3);

    sA2 += A * A;
    sB2 += B * B;
    sAB += A * B;
    sAT += A * target;
    sBT += B * target;
  }

  const det = sA2 * sB2 - sAB * sAB;
  let v1, v2;

  if (Math.abs(det) < 1e-9) {
    // Fallback to simple 1/3, 2/3 heuristic if matrix is singular
    const idx1 = Math.round(n / 3);
    const idx2 = Math.round(2 * n / 3);
    v1 = values[idx1];
    v2 = values[idx2];
  } else {
    v1 = (sB2 * sAT - sAB * sBT) / det;
    v2 = (sA2 * sBT - sAB * sAT) / det;
  }

  return {t0, v0, t1: t0 + dt / 3, v1, t2: t0 + 2 * dt / 3, v2, t3, v3};
}