diff options
| author | skal <pascal.massimino@gmail.com> | 2026-02-10 08:01:25 +0100 |
|---|---|---|
| committer | skal <pascal.massimino@gmail.com> | 2026-02-10 08:01:25 +0100 |
| commit | 47397444b30b0f461b1633297a68300179586fda (patch) | |
| tree | b84a59b6a6595b609fe71980e81b99cc1b180693 /src/gpu/effects/cnn_effect.cc | |
| parent | c51c146da9590845b864cbba3a7317c5b5bed56a (diff) | |
feat: Add CNN post-processing effect with modular WGSL architecture
Implements multi-layer convolutional neural network shader for stylized
post-processing of 3D rendered scenes:
**Core Components:**
- CNNEffect: C++ effect class with single-layer rendering (expandable to multi-pass)
- Modular WGSL snippets: cnn_activation, cnn_conv3x3/5x5/7x7, cnn_weights_generated
- Placeholder identity-like weights for initial testing (to be replaced by trained weights)
**Architecture:**
- Flexible kernel sizes (3×3, 5×5, 7×7) via separate snippet files
- ShaderComposer integration (#include resolution)
- Residual connections (input + processed output)
- Supports parallel convolutions (design ready, single conv implemented)
**Size Impact:**
- ~3-4 KB shader code (snippets + main shader)
- ~2-4 KB weights (depends on network architecture when trained)
- Total: ~5-8 KB (acceptable for 64k demo)
**Testing:**
- CNNEffect added to test_demo_effects.cc
- 36/36 tests passing (100%)
**Next Steps:**
- Training script (scripts/train_cnn.py) to generate real weights
- Multi-layer rendering with ping-pong textures
- Weight quantization for size optimization
handoff(Claude): CNN effect foundation complete, ready for training integration
Diffstat (limited to 'src/gpu/effects/cnn_effect.cc')
| -rw-r--r-- | src/gpu/effects/cnn_effect.cc | 36 |
1 files changed, 36 insertions, 0 deletions
diff --git a/src/gpu/effects/cnn_effect.cc b/src/gpu/effects/cnn_effect.cc new file mode 100644 index 0000000..25db0c2 --- /dev/null +++ b/src/gpu/effects/cnn_effect.cc @@ -0,0 +1,36 @@ +// CNN post-processing effect implementation +// Neural network-based stylization with modular WGSL + +#include "gpu/effects/cnn_effect.h" +#include "gpu/effects/post_process_helper.h" +#include "gpu/effects/shaders.h" + +CNNEffect::CNNEffect(const GpuContext& ctx, int num_layers) + : PostProcessEffect(ctx), num_layers_(num_layers), input_view_(nullptr), + bind_group_(nullptr) { + pipeline_ = create_post_process_pipeline(ctx_.device, ctx_.format, + cnn_layer_shader_wgsl); +} + +void CNNEffect::init(MainSequence* demo) { + PostProcessEffect::init(demo); + params_buffer_.init(ctx_.device); + + CNNLayerParams params = {0, 1, {0.0f, 0.0f}}; + params_buffer_.update(ctx_.queue, params); +} + +void CNNEffect::render(WGPURenderPassEncoder pass, float time, float beat, + float intensity, float aspect_ratio) { + if (!bind_group_) return; + + wgpuRenderPassEncoderSetPipeline(pass, pipeline_); + wgpuRenderPassEncoderSetBindGroup(pass, 0, bind_group_, 0, nullptr); + wgpuRenderPassEncoderDraw(pass, 3, 1, 0, 0); +} + +void CNNEffect::update_bind_group(WGPUTextureView input_view) { + input_view_ = input_view; + pp_update_bind_group(ctx_.device, pipeline_, &bind_group_, + input_view_, uniforms_.get(), params_buffer_.get()); +} |
