summaryrefslogtreecommitdiff
path: root/workspaces/main/shaders/scene1.wgsl
blob: 2a811f75c4e0fc39c446eeb08f74367ffdbbb4e0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
// Scene1 effect shader - ShaderToy conversion (raymarching cube & sphere)
// Source: Saturday cubism experiment by skal

#include "common_uniforms"
#include "math/color"
#include "math/utils"
#include "sdf_primitives"
#include "render/raymarching"

@group(0) @binding(0) var<uniform> uniforms: CommonUniforms;

const PI: f32 = 3.141592654;
const TAU: f32 = 6.283185307;

// Colors (precomputed HSV conversions)
const skyCol = vec3<f32>(0.176, 0.235, 0.25); // HSV(0.57, 0.90, 0.25)
const skylineCol = vec3<f32>(0.5, 0.125, 0.025); // HSV(0.02, 0.95, 0.5)
const sunCol = vec3<f32>(0.5, 0.163, 0.025); // HSV(0.07, 0.95, 0.5)
const diffCol1 = vec3<f32>(0.4, 1.0, 1.0); // HSV(0.60, 0.90, 1.0)
const diffCol2 = vec3<f32>(0.325, 1.0, 0.975); // HSV(0.55, 0.90, 1.0)

// Lighting (normalized manually)
const sunDir1 = vec3<f32>(0.0, 0.04997, -0.99875); // normalize(0, 0.05, -1)
const lightPos1 = vec3<f32>(10.0, 10.0, 10.0);
const lightPos2 = vec3<f32>(-10.0, 10.0, -10.0);

fn rayPlane(ro: vec3<f32>, rd: vec3<f32>, plane: vec4<f32>) -> f32 {
  return -(dot(ro, plane.xyz) + plane.w) / dot(rd, plane.xyz);
}

var<private> g_rot0: mat2x2<f32>;

fn render0(ro: vec3<f32>, rd: vec3<f32>) -> vec3<f32> {
  var col = vec3<f32>(0.0);
  var sf = 1.0001 - max(dot(sunDir1, rd), 0.0);
  col += skyCol * pow((1.0 - abs(rd.y)), 8.0);
  col += clamp(vec3<f32>(mix(0.0025, 0.125, tanh_approx(0.005 / sf)) / abs(rd.y)) * skylineCol, vec3<f32>(0.0), vec3<f32>(10.0));
  sf *= sf;
  col += sunCol * 0.00005 / sf;

  let tp1 = rayPlane(ro, rd, vec4<f32>(0.0, -1.0, 0.0, 6.0));
  if (tp1 > 0.0) {
    let pos = ro + tp1 * rd;
    let pp = pos.xz;
    let db = sdBox2D(pp, vec2<f32>(5.0, 9.0)) - 3.0;
    col += vec3<f32>(4.0) * skyCol * rd.y * rd.y * smoothstep(0.25, 0.0, db);
    col += vec3<f32>(0.8) * skyCol * exp(-0.5 * max(db, 0.0));
  }

  return clamp(col, vec3<f32>(0.0), vec3<f32>(10.0));
}

fn df(p_in: vec3<f32>) -> f32 {
  var p = p_in;
  p.x = p_in.x * g_rot0[0][0] + p_in.z * g_rot0[0][1];
  p.z = p_in.x * g_rot0[1][0] + p_in.z * g_rot0[1][1];

  // Cube
  var pc = p;
  pc -= vec3<f32>(-1.9, 0.0, 0.0);
  let dCube = sdBox(pc, vec3<f32>(1.6));

  // Sphere
  var ps = p;
  ps -= vec3<f32>(1.3, 0.0, 0.0);
  let dSphere = sdSphere(ps, 1.2);

  // Ground plane
  let dPlane = p.y + 1.0;

  // Union
  var d = min(dCube, dSphere);
  d = min(d, dPlane);

  return d;
}

fn boxCol(col: vec3<f32>, nsp: vec3<f32>, rd: vec3<f32>, nnor: vec3<f32>, nrcol: vec3<f32>, nshd1: f32, nshd2: f32) -> vec3<f32> {
  var nfre = 1.0 + dot(rd, nnor);
  nfre *= nfre;

  let nld1 = normalize(lightPos1 - nsp);
  let nld2 = normalize(lightPos2 - nsp);

  var ndif1 = max(dot(nld1, nnor), 0.0);
  ndif1 *= ndif1;

  var ndif2 = max(dot(nld2, nnor), 0.0);
  ndif2 *= ndif2;

  var scol = vec3<f32>(0.0);
  let rf = smoothstep(1.0, 0.9, nfre);
  scol += diffCol1 * ndif1 * nshd1;
  scol += diffCol2 * ndif2 * nshd2;
  scol += 0.1 * (skyCol + skylineCol);
  scol += nrcol * 0.75 * mix(vec3<f32>(0.25), vec3<f32>(0.5, 0.5, 1.0), nfre);

  return mix(col, scol, rf * smoothstep(90.0, 20.0, dot(nsp, nsp)));
}

fn render1(ro: vec3<f32>, rd: vec3<f32>) -> vec3<f32> {
  let skyCol_local = render0(ro, rd);
  var col = skyCol_local;

  let nt = rayMarch(ro, rd, 0.0);
  if (nt < MAX_RAY_LENGTH) {
    let nsp = ro + rd * nt;
    let nnor = normal(nsp);

    let nref = reflect(rd, nnor);
    let nrt = rayMarch(nsp, nref, 0.2);
    var nrcol = render0(nsp, nref);

    if (nrt < MAX_RAY_LENGTH) {
      let nrsp = nsp + nref * nrt;
      let nrnor = normal(nrsp);
      let nrref = reflect(nref, nrnor);
      nrcol = boxCol(nrcol, nrsp, nref, nrnor, render0(nrsp, nrref), 1.0, 1.0);
    }

    let nshd1 = mix(0.0, 1.0, shadow(nsp, normalize(lightPos1 - nsp), 0.1, distance(lightPos1, nsp)));
    let nshd2 = mix(0.0, 1.0, shadow(nsp, normalize(lightPos2 - nsp), 0.1, distance(lightPos2, nsp)));

    col = boxCol(col, nsp, rd, nnor, nrcol, nshd1, nshd2);
  }

  return col;
}

fn effect(p: vec2<f32>) -> vec3<f32> {
  g_rot0 = rot(-0.2 * uniforms.time);

  let fov = tan(TAU / 6.0);
  let ro = vec3<f32>(0.0, 2.5, 5.0);
  let la = vec3<f32>(0.0, 0.0, 0.0);
  let up = vec3<f32>(0.1, 1.0, 0.0);

  let ww = normalize(la - ro);
  let uu = normalize(cross(up, ww));
  let vv = cross(ww, uu);
  let rd = normalize(-p.x * uu + p.y * vv + fov * ww);

  return render1(ro, rd);
}

#include "render/fullscreen_vs"

@fragment fn fs_main(@builtin(position) p: vec4<f32>) -> @location(0) vec4<f32> {
  // Flip Y to match ShaderToy convention (origin at bottom-left)
  let flipped = vec2<f32>(p.x, uniforms.resolution.y - p.y);
  let q = flipped / uniforms.resolution;
  var coord = -1.0 + 2.0 * q;
  coord.x *= uniforms.resolution.x / uniforms.resolution.y;
  var col = effect(coord);
  col = aces_approx(col);
  col = sRGB(col);
  return vec4<f32>(col, 1.0);
}