summaryrefslogtreecommitdiff
path: root/workspaces/main/shaders/scene1.wgsl
blob: b0ec2ab8d2b7417ec45ec3d488a0652e52bb4c24 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
// Scene1 effect shader - ShaderToy conversion (raymarching cube & sphere)
// Source: Saturday cubism experiment by skal

#include "common_uniforms"

@group(0) @binding(0) var<uniform> uniforms: CommonUniforms;

const PI: f32 = 3.141592654;
const TAU: f32 = 6.283185307;
const TOLERANCE: f32 = 0.0005;
const MAX_RAY_LENGTH: f32 = 20.0;
const MAX_RAY_MARCHES: i32 = 80;
const MAX_SHD_MARCHES: i32 = 20;
const NORM_OFF: f32 = 0.005;

fn rot(a: f32) -> mat2x2<f32> {
  let c = cos(a);
  let s = sin(a);
  return mat2x2<f32>(c, s, -s, c);
}

// HSV to RGB conversion
const hsv2rgb_K = vec4<f32>(1.0, 2.0 / 3.0, 1.0 / 3.0, 3.0);
fn hsv2rgb(c: vec3<f32>) -> vec3<f32> {
  let p = abs(fract(c.xxx + hsv2rgb_K.xyz) * 6.0 - hsv2rgb_K.www);
  return c.z * mix(hsv2rgb_K.xxx, clamp(p - hsv2rgb_K.xxx, vec3<f32>(0.0), vec3<f32>(1.0)), c.y);
}

// Colors (precomputed HSV conversions)
const skyCol = vec3<f32>(0.176, 0.235, 0.25); // HSV(0.57, 0.90, 0.25)
const skylineCol = vec3<f32>(0.5, 0.125, 0.025); // HSV(0.02, 0.95, 0.5)
const sunCol = vec3<f32>(0.5, 0.163, 0.025); // HSV(0.07, 0.95, 0.5)
const diffCol1 = vec3<f32>(0.4, 1.0, 1.0); // HSV(0.60, 0.90, 1.0)
const diffCol2 = vec3<f32>(0.325, 1.0, 0.975); // HSV(0.55, 0.90, 1.0)

// Lighting (normalized manually)
const sunDir1 = vec3<f32>(0.0, 0.04997, -0.99875); // normalize(0, 0.05, -1)
const lightPos1 = vec3<f32>(10.0, 10.0, 10.0);
const lightPos2 = vec3<f32>(-10.0, 10.0, -10.0);

fn sRGB(t: vec3<f32>) -> vec3<f32> {
  return mix(1.055 * pow(t, vec3<f32>(1.0/2.4)) - 0.055, 12.92 * t, step(t, vec3<f32>(0.0031308)));
}

fn aces_approx(v_in: vec3<f32>) -> vec3<f32> {
  var v = max(v_in, vec3<f32>(0.0));
  v *= 0.6;
  let a = 2.51;
  let b = 0.03;
  let c = 2.43;
  let d = 0.59;
  let e = 0.14;
  return clamp((v * (a * v + b)) / (v * (c * v + d) + e), vec3<f32>(0.0), vec3<f32>(1.0));
}

fn tanh_approx(x: f32) -> f32 {
  let x2 = x * x;
  return clamp(x * (27.0 + x2) / (27.0 + 9.0 * x2), -1.0, 1.0);
}

fn rayPlane(ro: vec3<f32>, rd: vec3<f32>, plane: vec4<f32>) -> f32 {
  return -(dot(ro, plane.xyz) + plane.w) / dot(rd, plane.xyz);
}

fn box2d(p: vec2<f32>, b: vec2<f32>) -> f32 {
  let d = abs(p) - b;
  return length(max(d, vec2<f32>(0.0))) + min(max(d.x, d.y), 0.0);
}

fn box3d(p: vec3<f32>, b: vec3<f32>) -> f32 {
  let q = abs(p) - b;
  return length(max(q, vec3<f32>(0.0))) + min(max(q.x, max(q.y, q.z)), 0.0);
}

fn sphere(p: vec3<f32>, r: f32) -> f32 {
  return length(p) - r;
}

var<private> g_rot0: mat2x2<f32>;

fn render0(ro: vec3<f32>, rd: vec3<f32>) -> vec3<f32> {
  var col = vec3<f32>(0.0);
  var sf = 1.0001 - max(dot(sunDir1, rd), 0.0);
  col += skyCol * pow((1.0 - abs(rd.y)), 8.0);
  col += clamp(vec3<f32>(mix(0.0025, 0.125, tanh_approx(0.005 / sf)) / abs(rd.y)) * skylineCol, vec3<f32>(0.0), vec3<f32>(10.0));
  sf *= sf;
  col += sunCol * 0.00005 / sf;

  let tp1 = rayPlane(ro, rd, vec4<f32>(0.0, -1.0, 0.0, 6.0));
  if (tp1 > 0.0) {
    let pos = ro + tp1 * rd;
    let pp = pos.xz;
    let db = box2d(pp, vec2<f32>(5.0, 9.0)) - 3.0;
    col += vec3<f32>(4.0) * skyCol * rd.y * rd.y * smoothstep(0.25, 0.0, db);
    col += vec3<f32>(0.8) * skyCol * exp(-0.5 * max(db, 0.0));
  }

  return clamp(col, vec3<f32>(0.0), vec3<f32>(10.0));
}

fn df(p_in: vec3<f32>) -> f32 {
  var p = p_in;
  p.x = p_in.x * g_rot0[0][0] + p_in.z * g_rot0[0][1];
  p.z = p_in.x * g_rot0[1][0] + p_in.z * g_rot0[1][1];

  // Cube
  var pc = p;
  pc -= vec3<f32>(-1.9, 0.0, 0.0);
  let dCube = box3d(pc, vec3<f32>(1.6));

  // Sphere
  var ps = p;
  ps -= vec3<f32>(1.3, 0.0, 0.0);
  let dSphere = sphere(ps, 1.2);

  // Ground plane
  let dPlane = p.y + 1.0;

  // Union
  var d = min(dCube, dSphere);
  d = min(d, dPlane);

  return d;
}

fn normal(pos: vec3<f32>) -> vec3<f32> {
  let eps = vec2<f32>(NORM_OFF, 0.0);
  var nor: vec3<f32>;
  nor.x = df(pos + eps.xyy) - df(pos - eps.xyy);
  nor.y = df(pos + eps.yxy) - df(pos - eps.yxy);
  nor.z = df(pos + eps.yyx) - df(pos - eps.yyx);
  return normalize(nor);
}

fn rayMarch(ro: vec3<f32>, rd: vec3<f32>, initt: f32) -> f32 {
  var t = initt;
  for (var i = 0; i < MAX_RAY_MARCHES; i++) {
    if (t > MAX_RAY_LENGTH) {
      t = MAX_RAY_LENGTH;
      break;
    }
    let d = df(ro + rd * t);
    if (d < TOLERANCE) {
      break;
    }
    t += d;
  }
  return t;
}

fn shadow(lp: vec3<f32>, ld: vec3<f32>, mint: f32, maxt: f32) -> f32 {
  let ds = 1.0 - 0.4;
  var t = mint;
  var nd = 1e6;
  let soff = 0.05;
  let smul = 1.5;
  for (var i = 0; i < MAX_SHD_MARCHES; i++) {
    let p = lp + ld * t;
    let d = df(p);
    if (d < TOLERANCE || t >= maxt) {
      let sd = 1.0 - exp(-smul * max(t / maxt - soff, 0.0));
      return select(mix(sd, 1.0, smoothstep(0.0, 0.025, nd)), sd, t >= maxt);
    }
    nd = min(nd, d);
    t += ds * d;
  }
  let sd = 1.0 - exp(-smul * max(t / maxt - soff, 0.0));
  return sd;
}

fn boxCol(col: vec3<f32>, nsp: vec3<f32>, rd: vec3<f32>, nnor: vec3<f32>, nrcol: vec3<f32>, nshd1: f32, nshd2: f32) -> vec3<f32> {
  var nfre = 1.0 + dot(rd, nnor);
  nfre *= nfre;

  let nld1 = normalize(lightPos1 - nsp);
  let nld2 = normalize(lightPos2 - nsp);

  var ndif1 = max(dot(nld1, nnor), 0.0);
  ndif1 *= ndif1;

  var ndif2 = max(dot(nld2, nnor), 0.0);
  ndif2 *= ndif2;

  var scol = vec3<f32>(0.0);
  let rf = smoothstep(1.0, 0.9, nfre);
  scol += diffCol1 * ndif1 * nshd1;
  scol += diffCol2 * ndif2 * nshd2;
  scol += 0.1 * (skyCol + skylineCol);
  scol += nrcol * 0.75 * mix(vec3<f32>(0.25), vec3<f32>(0.5, 0.5, 1.0), nfre);

  return mix(col, scol, rf * smoothstep(90.0, 20.0, dot(nsp, nsp)));
}

fn render1(ro: vec3<f32>, rd: vec3<f32>) -> vec3<f32> {
  let skyCol_local = render0(ro, rd);
  var col = skyCol_local;

  let nt = rayMarch(ro, rd, 0.0);
  if (nt < MAX_RAY_LENGTH) {
    let nsp = ro + rd * nt;
    let nnor = normal(nsp);

    let nref = reflect(rd, nnor);
    let nrt = rayMarch(nsp, nref, 0.2);
    var nrcol = render0(nsp, nref);

    if (nrt < MAX_RAY_LENGTH) {
      let nrsp = nsp + nref * nrt;
      let nrnor = normal(nrsp);
      let nrref = reflect(nref, nrnor);
      nrcol = boxCol(nrcol, nrsp, nref, nrnor, render0(nrsp, nrref), 1.0, 1.0);
    }

    let nshd1 = mix(0.0, 1.0, shadow(nsp, normalize(lightPos1 - nsp), 0.1, distance(lightPos1, nsp)));
    let nshd2 = mix(0.0, 1.0, shadow(nsp, normalize(lightPos2 - nsp), 0.1, distance(lightPos2, nsp)));

    col = boxCol(col, nsp, rd, nnor, nrcol, nshd1, nshd2);
  }

  return col;
}

fn effect(p: vec2<f32>) -> vec3<f32> {
  g_rot0 = rot(-0.2 * uniforms.time);

  let fov = tan(TAU / 6.0);
  let ro = vec3<f32>(0.0, 2.5, 5.0);
  let la = vec3<f32>(0.0, 0.0, 0.0);
  let up = vec3<f32>(0.1, 1.0, 0.0);

  let ww = normalize(la - ro);
  let uu = normalize(cross(up, ww));
  let vv = cross(ww, uu);
  let rd = normalize(-p.x * uu + p.y * vv + fov * ww);

  return render1(ro, rd);
}

@vertex fn vs_main(@builtin(vertex_index) i: u32) -> @builtin(position) vec4<f32> {
  var pos = array<vec2<f32>, 3>(
    vec2<f32>(-1.0, -1.0),
    vec2<f32>(3.0, -1.0),
    vec2<f32>(-1.0, 3.0)
  );
  return vec4<f32>(pos[i], 0.0, 1.0);
}

@fragment fn fs_main(@builtin(position) p: vec4<f32>) -> @location(0) vec4<f32> {
  let q = p.xy / uniforms.resolution;
  var coord = -1.0 + 2.0 * q;
  coord.x *= uniforms.resolution.x / uniforms.resolution.y;
  var col = effect(coord);
  col = aces_approx(col);
  col = sRGB(col);
  return vec4<f32>(col, 1.0);
}