1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
|
// CNN v2 Static Features Compute Shader
// Generates 8D parametric features: [p0, p1, p2, p3, uv.x, uv.y, sin10_x, bias]
// p0-p3: Parametric features (currently RGBD from mip0, could be mip1/2, gradients, etc.)
// Note: Input image RGBD (mip0) fed separately to Layer 0
@group(0) @binding(0) var input_tex: texture_2d<f32>;
@group(0) @binding(1) var input_tex_mip1: texture_2d<f32>;
@group(0) @binding(2) var input_tex_mip2: texture_2d<f32>;
@group(0) @binding(3) var depth_tex: texture_2d<f32>;
@group(0) @binding(4) var output_tex: texture_storage_2d<rgba32uint, write>;
@compute @workgroup_size(8, 8)
fn main(@builtin(global_invocation_id) id: vec3<u32>) {
let coord = vec2<i32>(id.xy);
let dims = textureDimensions(input_tex);
if (coord.x >= i32(dims.x) || coord.y >= i32(dims.y)) {
return;
}
// Parametric features (p0-p3)
// TODO: Experiment with mip1 grayscale, Sobel gradients, etc.
// For now, use RGBD from mip 0 (same as input, but could differ)
let rgba = textureLoad(input_tex, coord, 0);
let p0 = rgba.r;
let p1 = rgba.g;
let p2 = rgba.b;
let p3 = textureLoad(depth_tex, coord, 0).r;
// UV coordinates (normalized [0,1], bottom-left origin)
let uv_x = f32(coord.x) / f32(dims.x);
let uv_y = 1.0 - (f32(coord.y) / f32(dims.y));
// Multi-frequency position encoding
let sin10_x = sin(10.0 * uv_x);
// Bias dimension (always 1.0)
let bias = 1.0;
// Pack 8×f16 into 4×u32 (rgba32uint)
// [p0, p1, p2, p3, uv_x, uv_y, sin10_x, bias]
let packed = vec4<u32>(
pack2x16float(vec2<f32>(p0, p1)),
pack2x16float(vec2<f32>(p2, p3)),
pack2x16float(vec2<f32>(uv_x, uv_y)),
pack2x16float(vec2<f32>(sin10_x, bias))
);
textureStore(output_tex, coord, packed);
}
|