1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
|
#!/usr/bin/env python3
"""CNN v2 Training Script - Parametric Static Features
Trains a multi-layer CNN with 7D static feature input:
- RGBD (4D)
- UV coordinates (2D)
- sin(10*uv.x) position encoding (1D)
- Bias dimension (1D, always 1.0)
"""
import argparse
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from pathlib import Path
from PIL import Image
import time
import cv2
def compute_static_features(rgb, depth=None):
"""Generate 7D static features + bias dimension.
Args:
rgb: (H, W, 3) RGB image [0, 1]
depth: (H, W) depth map [0, 1], optional
Returns:
(H, W, 8) static features tensor
"""
h, w = rgb.shape[:2]
# RGBD channels
r, g, b = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2]
d = depth if depth is not None else np.zeros((h, w), dtype=np.float32)
# UV coordinates (normalized [0, 1])
uv_x = np.linspace(0, 1, w)[None, :].repeat(h, axis=0).astype(np.float32)
uv_y = np.linspace(0, 1, h)[:, None].repeat(w, axis=1).astype(np.float32)
# Multi-frequency position encoding
sin10_x = np.sin(10.0 * uv_x).astype(np.float32)
# Bias dimension (always 1.0)
bias = np.ones((h, w), dtype=np.float32)
# Stack: [R, G, B, D, uv.x, uv.y, sin10_x, bias]
features = np.stack([r, g, b, d, uv_x, uv_y, sin10_x, bias], axis=-1)
return features
class CNNv2(nn.Module):
"""CNN v2 with parametric static features.
TODO: Add quantization-aware training (QAT) for 8-bit weights
- Use torch.quantization.QuantStub/DeQuantStub
- Train with fake quantization to adapt to 8-bit precision
- Target: ~1.6 KB weights (vs 3.2 KB with f16)
"""
def __init__(self, kernels=[1, 3, 5], channels=[16, 8, 4]):
super().__init__()
self.kernels = kernels
self.channels = channels
# Input layer: 8D (7 features + bias) → channels[0]
self.layer0 = nn.Conv2d(8, channels[0], kernel_size=kernels[0],
padding=kernels[0]//2, bias=False)
# Inner layers: (8 + C_prev) → C_next
in_ch_1 = 8 + channels[0]
self.layer1 = nn.Conv2d(in_ch_1, channels[1], kernel_size=kernels[1],
padding=kernels[1]//2, bias=False)
# Output layer: (8 + C_last) → 4 (RGBA)
in_ch_2 = 8 + channels[1]
self.layer2 = nn.Conv2d(in_ch_2, 4, kernel_size=kernels[2],
padding=kernels[2]//2, bias=False)
def forward(self, static_features):
"""Forward pass with static feature concatenation.
Args:
static_features: (B, 8, H, W) static features
Returns:
(B, 4, H, W) RGBA output [0, 1]
"""
# Layer 0: Use full 8D static features
x0 = self.layer0(static_features)
x0 = F.relu(x0)
# Layer 1: Concatenate static + layer0 output
x1_input = torch.cat([static_features, x0], dim=1)
x1 = self.layer1(x1_input)
x1 = F.relu(x1)
# Layer 2: Concatenate static + layer1 output
x2_input = torch.cat([static_features, x1], dim=1)
output = self.layer2(x2_input)
return torch.sigmoid(output)
class PatchDataset(Dataset):
"""Patch-based dataset extracting salient regions from images."""
def __init__(self, input_dir, target_dir, patch_size=32, patches_per_image=64,
detector='harris'):
self.input_paths = sorted(Path(input_dir).glob("*.png"))
self.target_paths = sorted(Path(target_dir).glob("*.png"))
self.patch_size = patch_size
self.patches_per_image = patches_per_image
self.detector = detector
assert len(self.input_paths) == len(self.target_paths), \
f"Mismatch: {len(self.input_paths)} inputs vs {len(self.target_paths)} targets"
print(f"Found {len(self.input_paths)} image pairs")
print(f"Extracting {patches_per_image} patches per image using {detector} detector")
print(f"Total patches: {len(self.input_paths) * patches_per_image}")
def __len__(self):
return len(self.input_paths) * self.patches_per_image
def _detect_salient_points(self, img_array):
"""Detect salient points on original image.
TODO: Add random sampling to training vectors
- In addition to salient points, incorporate randomly-located samples
- Default: 10% random samples, 90% salient points
- Prevents overfitting to only high-gradient regions
- Improves generalization across entire image
- Configurable via --random-sample-percent parameter
"""
gray = cv2.cvtColor((img_array * 255).astype(np.uint8), cv2.COLOR_RGB2GRAY)
h, w = gray.shape
half_patch = self.patch_size // 2
corners = None
if self.detector == 'harris':
corners = cv2.goodFeaturesToTrack(gray, self.patches_per_image * 2,
qualityLevel=0.01, minDistance=half_patch)
elif self.detector == 'fast':
fast = cv2.FastFeatureDetector_create(threshold=20)
keypoints = fast.detect(gray, None)
corners = np.array([[kp.pt[0], kp.pt[1]] for kp in keypoints[:self.patches_per_image * 2]])
corners = corners.reshape(-1, 1, 2) if len(corners) > 0 else None
elif self.detector == 'shi-tomasi':
corners = cv2.goodFeaturesToTrack(gray, self.patches_per_image * 2,
qualityLevel=0.01, minDistance=half_patch,
useHarrisDetector=False)
elif self.detector == 'gradient':
grad_x = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=3)
grad_y = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=3)
gradient_mag = np.sqrt(grad_x**2 + grad_y**2)
threshold = np.percentile(gradient_mag, 95)
y_coords, x_coords = np.where(gradient_mag > threshold)
if len(x_coords) > self.patches_per_image * 2:
indices = np.random.choice(len(x_coords), self.patches_per_image * 2, replace=False)
x_coords = x_coords[indices]
y_coords = y_coords[indices]
corners = np.array([[x, y] for x, y in zip(x_coords, y_coords)])
corners = corners.reshape(-1, 1, 2) if len(corners) > 0 else None
# Fallback to random if no corners found
if corners is None or len(corners) == 0:
x_coords = np.random.randint(half_patch, w - half_patch, self.patches_per_image)
y_coords = np.random.randint(half_patch, h - half_patch, self.patches_per_image)
corners = np.array([[x, y] for x, y in zip(x_coords, y_coords)])
corners = corners.reshape(-1, 1, 2)
# Filter valid corners
valid_corners = []
for corner in corners:
x, y = int(corner[0][0]), int(corner[0][1])
if half_patch <= x < w - half_patch and half_patch <= y < h - half_patch:
valid_corners.append((x, y))
if len(valid_corners) >= self.patches_per_image:
break
# Fill with random if not enough
while len(valid_corners) < self.patches_per_image:
x = np.random.randint(half_patch, w - half_patch)
y = np.random.randint(half_patch, h - half_patch)
valid_corners.append((x, y))
return valid_corners
def __getitem__(self, idx):
img_idx = idx // self.patches_per_image
patch_idx = idx % self.patches_per_image
# Load original images (no resize)
input_img = np.array(Image.open(self.input_paths[img_idx]).convert('RGB')) / 255.0
target_img = np.array(Image.open(self.target_paths[img_idx]).convert('RGB')) / 255.0
# Detect salient points on original image
salient_points = self._detect_salient_points(input_img)
cx, cy = salient_points[patch_idx]
# Extract patch
half_patch = self.patch_size // 2
y1, y2 = cy - half_patch, cy + half_patch
x1, x2 = cx - half_patch, cx + half_patch
input_patch = input_img[y1:y2, x1:x2]
target_patch = target_img[y1:y2, x1:x2]
# Compute static features for patch
static_feat = compute_static_features(input_patch.astype(np.float32))
# Convert to tensors (C, H, W)
static_feat = torch.from_numpy(static_feat).permute(2, 0, 1)
target = torch.from_numpy(target_patch.astype(np.float32)).permute(2, 0, 1)
# Pad target to 4 channels (RGBA)
target = F.pad(target, (0, 0, 0, 0, 0, 1), value=1.0)
return static_feat, target
class ImagePairDataset(Dataset):
"""Dataset of input/target image pairs (full-image mode)."""
def __init__(self, input_dir, target_dir, target_size=(256, 256)):
self.input_paths = sorted(Path(input_dir).glob("*.png"))
self.target_paths = sorted(Path(target_dir).glob("*.png"))
self.target_size = target_size
assert len(self.input_paths) == len(self.target_paths), \
f"Mismatch: {len(self.input_paths)} inputs vs {len(self.target_paths)} targets"
def __len__(self):
return len(self.input_paths)
def __getitem__(self, idx):
# Load and resize images to fixed size
input_pil = Image.open(self.input_paths[idx]).convert('RGB')
target_pil = Image.open(self.target_paths[idx]).convert('RGB')
# Resize to target size
input_pil = input_pil.resize(self.target_size, Image.LANCZOS)
target_pil = target_pil.resize(self.target_size, Image.LANCZOS)
input_img = np.array(input_pil) / 255.0
target_img = np.array(target_pil) / 255.0
# Compute static features
static_feat = compute_static_features(input_img.astype(np.float32))
# Convert to tensors (C, H, W)
static_feat = torch.from_numpy(static_feat).permute(2, 0, 1)
target = torch.from_numpy(target_img.astype(np.float32)).permute(2, 0, 1)
# Pad target to 4 channels (RGBA)
target = F.pad(target, (0, 0, 0, 0, 0, 1), value=1.0)
return static_feat, target
def train(args):
"""Train CNN v2 model."""
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Training on {device}")
# Create dataset (patch-based or full-image)
if args.full_image:
print(f"Mode: Full-image (resized to {args.image_size}x{args.image_size})")
target_size = (args.image_size, args.image_size)
dataset = ImagePairDataset(args.input, args.target, target_size=target_size)
dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=True)
else:
print(f"Mode: Patch-based ({args.patch_size}x{args.patch_size} patches)")
dataset = PatchDataset(args.input, args.target,
patch_size=args.patch_size,
patches_per_image=args.patches_per_image,
detector=args.detector)
dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=True)
# Create model
model = CNNv2(kernels=args.kernel_sizes, channels=args.channels).to(device)
total_params = sum(p.numel() for p in model.parameters())
print(f"Model: {args.channels} channels, {args.kernel_sizes} kernels, {total_params} weights")
# Optimizer and loss
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
criterion = nn.MSELoss()
# Training loop
print(f"\nTraining for {args.epochs} epochs...")
start_time = time.time()
for epoch in range(1, args.epochs + 1):
model.train()
epoch_loss = 0.0
for static_feat, target in dataloader:
static_feat = static_feat.to(device)
target = target.to(device)
optimizer.zero_grad()
output = model(static_feat)
loss = criterion(output, target)
loss.backward()
optimizer.step()
epoch_loss += loss.item()
avg_loss = epoch_loss / len(dataloader)
# Print loss at every epoch (overwrite line with \r)
elapsed = time.time() - start_time
print(f"\rEpoch {epoch:4d}/{args.epochs} | Loss: {avg_loss:.6f} | Time: {elapsed:.1f}s", end='', flush=True)
# Save checkpoint
if args.checkpoint_every > 0 and epoch % args.checkpoint_every == 0:
print() # Newline before checkpoint message
checkpoint_path = Path(args.checkpoint_dir) / f"checkpoint_epoch_{epoch}.pth"
checkpoint_path.parent.mkdir(parents=True, exist_ok=True)
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': avg_loss,
'config': {
'kernels': args.kernel_sizes,
'channels': args.channels,
'features': ['R', 'G', 'B', 'D', 'uv.x', 'uv.y', 'sin10_x', 'bias']
}
}, checkpoint_path)
print(f" → Saved checkpoint: {checkpoint_path}")
print(f"\nTraining complete! Total time: {time.time() - start_time:.1f}s")
return model
def main():
parser = argparse.ArgumentParser(description='Train CNN v2 with parametric static features')
parser.add_argument('--input', type=str, required=True, help='Input images directory')
parser.add_argument('--target', type=str, required=True, help='Target images directory')
# Training mode
parser.add_argument('--full-image', action='store_true',
help='Use full-image mode (resize all images)')
parser.add_argument('--image-size', type=int, default=256,
help='Full-image mode: resize to this size (default: 256)')
# Patch-based mode (default)
parser.add_argument('--patch-size', type=int, default=32,
help='Patch mode: patch size (default: 32)')
parser.add_argument('--patches-per-image', type=int, default=64,
help='Patch mode: patches per image (default: 64)')
parser.add_argument('--detector', type=str, default='harris',
choices=['harris', 'fast', 'shi-tomasi', 'gradient'],
help='Patch mode: salient point detector (default: harris)')
# TODO: Add --random-sample-percent parameter (default: 10)
# Mix salient points with random samples for better generalization
# Model architecture
parser.add_argument('--kernel-sizes', type=int, nargs=3, default=[1, 3, 5],
help='Kernel sizes for 3 layers (default: 1 3 5)')
parser.add_argument('--channels', type=int, nargs=3, default=[16, 8, 4],
help='Output channels for 3 layers (default: 16 8 4)')
# Training parameters
parser.add_argument('--epochs', type=int, default=5000, help='Training epochs')
parser.add_argument('--batch-size', type=int, default=16, help='Batch size')
parser.add_argument('--lr', type=float, default=1e-3, help='Learning rate')
parser.add_argument('--checkpoint-dir', type=str, default='checkpoints',
help='Checkpoint directory')
parser.add_argument('--checkpoint-every', type=int, default=1000,
help='Save checkpoint every N epochs (0 = disable)')
args = parser.parse_args()
train(args)
if __name__ == '__main__':
main()
|