summaryrefslogtreecommitdiff
path: root/training/train_cnn.py
blob: 82f0b481669d58982ac0378c869471dadf7af68b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
#!/usr/bin/env python3
"""
CNN Training Script for Image-to-Image Transformation

Trains a convolutional neural network on multiple input/target image pairs.

Usage:
    python3 train_cnn.py --input input_dir/ --target target_dir/ [options]

Example:
    python3 train_cnn.py --input ./input --target ./output --layers 3 --epochs 100
"""

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from PIL import Image
import os
import sys
import argparse
import glob


class ImagePairDataset(Dataset):
    """Dataset for loading matching input/target image pairs"""

    def __init__(self, input_dir, target_dir, transform=None):
        self.input_dir = input_dir
        self.target_dir = target_dir
        self.transform = transform

        # Find all images in input directory
        input_patterns = ['*.png', '*.jpg', '*.jpeg', '*.PNG', '*.JPG', '*.JPEG']
        self.image_pairs = []

        for pattern in input_patterns:
            input_files = glob.glob(os.path.join(input_dir, pattern))
            for input_path in input_files:
                filename = os.path.basename(input_path)
                # Try to find matching target with same name but any supported extension
                target_path = None
                for ext in ['png', 'jpg', 'jpeg', 'PNG', 'JPG', 'JPEG']:
                    base_name = os.path.splitext(filename)[0]
                    candidate = os.path.join(target_dir, f"{base_name}.{ext}")
                    if os.path.exists(candidate):
                        target_path = candidate
                        break

                if target_path:
                    self.image_pairs.append((input_path, target_path))

        if not self.image_pairs:
            raise ValueError(f"No matching image pairs found between {input_dir} and {target_dir}")

        print(f"Found {len(self.image_pairs)} matching image pairs")

    def __len__(self):
        return len(self.image_pairs)

    def __getitem__(self, idx):
        input_path, target_path = self.image_pairs[idx]

        input_img = Image.open(input_path).convert('RGB')
        target_img = Image.open(target_path).convert('RGB')

        if self.transform:
            input_img = self.transform(input_img)
            target_img = self.transform(target_img)

        return input_img, target_img


class CoordConv2d(nn.Module):
    """Conv2d that accepts coordinate input separate from spatial patches"""

    def __init__(self, in_channels, out_channels, kernel_size, padding=0):
        super().__init__()
        self.conv_rgba = nn.Conv2d(in_channels, out_channels, kernel_size, padding=padding, bias=False)
        self.coord_weights = nn.Parameter(torch.randn(out_channels, 2) * 0.01)
        self.bias = nn.Parameter(torch.zeros(out_channels))

    def forward(self, x, coords):
        # x: [B, C, H, W] image
        # coords: [B, 2, H, W] coordinate grid
        out = self.conv_rgba(x)
        B, C, H, W = out.shape
        coord_contrib = torch.einsum('bchw,oc->bohw', coords, self.coord_weights)
        out = out + coord_contrib + self.bias.view(1, -1, 1, 1)
        return out


class SimpleCNN(nn.Module):
    """Simple CNN for image-to-image transformation"""

    def __init__(self, num_layers=1, kernel_sizes=None):
        super(SimpleCNN, self).__init__()

        if kernel_sizes is None:
            kernel_sizes = [3] * num_layers

        assert len(kernel_sizes) == num_layers, "kernel_sizes must match num_layers"

        self.kernel_sizes = kernel_sizes
        self.layers = nn.ModuleList()

        for i, kernel_size in enumerate(kernel_sizes):
            padding = kernel_size // 2
            if i == 0:
                self.layers.append(CoordConv2d(3, 3, kernel_size, padding=padding))
            else:
                self.layers.append(nn.Conv2d(3, 3, kernel_size=kernel_size, padding=padding, bias=True))

        self.use_residual = True

    def forward(self, x):
        B, C, H, W = x.shape
        y_coords = torch.linspace(0, 1, H, device=x.device).view(1,1,H,1).expand(B,1,H,W)
        x_coords = torch.linspace(0, 1, W, device=x.device).view(1,1,1,W).expand(B,1,H,W)
        coords = torch.cat([x_coords, y_coords], dim=1)

        out = self.layers[0](x, coords)
        out = torch.tanh(out)

        for i in range(1, len(self.layers)):
            out = self.layers[i](out)
            if i < len(self.layers) - 1:
                out = torch.tanh(out)

        if self.use_residual:
            out = x + out * 0.3
        return out


def export_weights_to_wgsl(model, output_path, kernel_sizes):
    """Export trained weights to WGSL format"""

    with open(output_path, 'w') as f:
        f.write("// Auto-generated CNN weights\n")
        f.write("// DO NOT EDIT - Generated by train_cnn.py\n\n")

        layer_idx = 0
        for i, layer in enumerate(model.layers):
            if isinstance(layer, CoordConv2d):
                # Export RGBA weights
                weights = layer.conv_rgba.weight.data.cpu().numpy()
                kernel_size = kernel_sizes[layer_idx]
                out_ch, in_ch, kh, kw = weights.shape
                num_positions = kh * kw

                f.write(f"const rgba_weights_layer{layer_idx}: array<mat4x4<f32>, {num_positions}> = array(\n")
                for pos in range(num_positions):
                    row = pos // kw
                    col = pos % kw
                    f.write("  mat4x4<f32>(\n")
                    for out_c in range(min(4, out_ch)):
                        vals = []
                        for in_c in range(min(4, in_ch)):
                            vals.append(f"{weights[out_c, in_c, row, col]:.6f}")
                        f.write(f"    {', '.join(vals)},\n")
                    f.write("  )")
                    if pos < num_positions - 1:
                        f.write(",\n")
                    else:
                        f.write("\n")
                f.write(");\n\n")

                # Export coordinate weights
                coord_w = layer.coord_weights.data.cpu().numpy()
                f.write(f"const coord_weights_layer{layer_idx} = mat2x4<f32>(\n")
                for c in range(2):
                    vals = [f"{coord_w[out_c, c]:.6f}" for out_c in range(min(4, coord_w.shape[0]))]
                    f.write(f"  {', '.join(vals)}")
                    if c < 1:
                        f.write(",\n")
                    else:
                        f.write("\n")
                f.write(");\n\n")

                # Export bias
                bias = layer.bias.data.cpu().numpy()
                f.write(f"const bias_layer{layer_idx} = vec4<f32>(")
                f.write(", ".join([f"{b:.6f}" for b in bias[:4]]))
                f.write(");\n\n")

                layer_idx += 1
            elif isinstance(layer, nn.Conv2d):
                # Standard conv layer
                weights = layer.weight.data.cpu().numpy()
                kernel_size = kernel_sizes[layer_idx]
                out_ch, in_ch, kh, kw = weights.shape
                num_positions = kh * kw

                f.write(f"const weights_layer{layer_idx}: array<mat4x4<f32>, {num_positions}> = array(\n")
                for pos in range(num_positions):
                    row = pos // kw
                    col = pos % kw
                    f.write("  mat4x4<f32>(\n")
                    for out_c in range(min(4, out_ch)):
                        vals = []
                        for in_c in range(min(4, in_ch)):
                            vals.append(f"{weights[out_c, in_c, row, col]:.6f}")
                        f.write(f"    {', '.join(vals)},\n")
                    f.write("  )")
                    if pos < num_positions - 1:
                        f.write(",\n")
                    else:
                        f.write("\n")
                f.write(");\n\n")

                # Export bias
                bias = layer.bias.data.cpu().numpy()
                f.write(f"const bias_layer{layer_idx} = vec4<f32>(")
                f.write(", ".join([f"{b:.6f}" for b in bias[:4]]))
                f.write(");\n\n")

                layer_idx += 1


def train(args):
    """Main training loop"""

    # Setup device
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    print(f"Using device: {device}")

    # Prepare dataset
    transform = transforms.Compose([
        transforms.Resize((256, 256)),
        transforms.ToTensor(),
    ])

    dataset = ImagePairDataset(args.input, args.target, transform=transform)
    dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=True)

    # Parse kernel sizes
    kernel_sizes = [int(k) for k in args.kernel_sizes.split(',')]
    if len(kernel_sizes) == 1 and args.layers > 1:
        kernel_sizes = kernel_sizes * args.layers

    # Create model
    model = SimpleCNN(num_layers=args.layers, kernel_sizes=kernel_sizes).to(device)

    # Loss and optimizer
    criterion = nn.MSELoss()
    optimizer = optim.Adam(model.parameters(), lr=args.learning_rate)

    # Resume from checkpoint
    start_epoch = 0
    if args.resume:
        if os.path.exists(args.resume):
            print(f"Loading checkpoint from {args.resume}...")
            checkpoint = torch.load(args.resume, map_location=device)
            model.load_state_dict(checkpoint['model_state'])
            optimizer.load_state_dict(checkpoint['optimizer_state'])
            start_epoch = checkpoint['epoch'] + 1
            print(f"Resumed from epoch {start_epoch}")
        else:
            print(f"Warning: Checkpoint file '{args.resume}' not found, starting from scratch")

    # Training loop
    print(f"\nTraining for {args.epochs} epochs (starting from epoch {start_epoch})...")
    for epoch in range(start_epoch, args.epochs):
        epoch_loss = 0.0
        for batch_idx, (inputs, targets) in enumerate(dataloader):
            inputs, targets = inputs.to(device), targets.to(device)

            optimizer.zero_grad()
            outputs = model(inputs)
            loss = criterion(outputs, targets)
            loss.backward()
            optimizer.step()

            epoch_loss += loss.item()

        avg_loss = epoch_loss / len(dataloader)
        if (epoch + 1) % 10 == 0:
            print(f"Epoch [{epoch+1}/{args.epochs}], Loss: {avg_loss:.6f}")

        # Save checkpoint
        if args.checkpoint_every > 0 and (epoch + 1) % args.checkpoint_every == 0:
            checkpoint_dir = args.checkpoint_dir or 'training/checkpoints'
            os.makedirs(checkpoint_dir, exist_ok=True)
            checkpoint_path = os.path.join(checkpoint_dir, f'checkpoint_epoch_{epoch+1}.pth')
            torch.save({
                'epoch': epoch,
                'model_state': model.state_dict(),
                'optimizer_state': optimizer.state_dict(),
                'loss': avg_loss,
                'kernel_sizes': kernel_sizes,
                'num_layers': args.layers
            }, checkpoint_path)
            print(f"Saved checkpoint to {checkpoint_path}")

    # Export weights
    output_path = args.output or 'workspaces/main/shaders/cnn/cnn_weights_generated.wgsl'
    print(f"\nExporting weights to {output_path}...")
    os.makedirs(os.path.dirname(output_path), exist_ok=True)
    export_weights_to_wgsl(model, output_path, kernel_sizes)

    print("Training complete!")


def main():
    parser = argparse.ArgumentParser(description='Train CNN for image-to-image transformation')
    parser.add_argument('--input', required=True, help='Input image directory')
    parser.add_argument('--target', required=True, help='Target image directory')
    parser.add_argument('--layers', type=int, default=1, help='Number of CNN layers (default: 1)')
    parser.add_argument('--kernel_sizes', default='3', help='Comma-separated kernel sizes (default: 3)')
    parser.add_argument('--epochs', type=int, default=100, help='Number of training epochs (default: 100)')
    parser.add_argument('--batch_size', type=int, default=4, help='Batch size (default: 4)')
    parser.add_argument('--learning_rate', type=float, default=0.001, help='Learning rate (default: 0.001)')
    parser.add_argument('--output', help='Output WGSL file path (default: workspaces/main/shaders/cnn/cnn_weights_generated.wgsl)')
    parser.add_argument('--checkpoint-every', type=int, default=0, help='Save checkpoint every N epochs (default: 0 = disabled)')
    parser.add_argument('--checkpoint-dir', help='Checkpoint directory (default: training/checkpoints)')
    parser.add_argument('--resume', help='Resume from checkpoint file')

    args = parser.parse_args()

    # Validate directories
    if not os.path.isdir(args.input):
        print(f"Error: Input directory '{args.input}' does not exist")
        sys.exit(1)

    if not os.path.isdir(args.target):
        print(f"Error: Target directory '{args.target}' does not exist")
        sys.exit(1)

    train(args)


if __name__ == "__main__":
    main()