1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
|
#!/usr/bin/env python3
"""
CNN Training Script for Image-to-Image Transformation
Trains a convolutional neural network on multiple input/target image pairs.
Usage:
# Training
python3 train_cnn.py --input input_dir/ --target target_dir/ [options]
# Inference (generate ground truth)
python3 train_cnn.py --infer image.png --export-only checkpoint.pth --output result.png
Example:
python3 train_cnn.py --input ./input --target ./output --layers 3 --epochs 100
python3 train_cnn.py --infer input.png --export-only checkpoints/checkpoint_epoch_10000.pth
"""
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from PIL import Image
import numpy as np
import cv2
import os
import sys
import argparse
import glob
class ImagePairDataset(Dataset):
"""Dataset for loading matching input/target image pairs"""
def __init__(self, input_dir, target_dir, transform=None):
self.input_dir = input_dir
self.target_dir = target_dir
self.transform = transform
# Find all images in input directory
input_patterns = ['*.png', '*.jpg', '*.jpeg', '*.PNG', '*.JPG', '*.JPEG']
self.image_pairs = []
for pattern in input_patterns:
input_files = glob.glob(os.path.join(input_dir, pattern))
for input_path in input_files:
filename = os.path.basename(input_path)
# Try to find matching target with same name but any supported extension
target_path = None
for ext in ['png', 'jpg', 'jpeg', 'PNG', 'JPG', 'JPEG']:
base_name = os.path.splitext(filename)[0]
candidate = os.path.join(target_dir, f"{base_name}.{ext}")
if os.path.exists(candidate):
target_path = candidate
break
if target_path:
self.image_pairs.append((input_path, target_path))
if not self.image_pairs:
raise ValueError(f"No matching image pairs found between {input_dir} and {target_dir}")
print(f"Found {len(self.image_pairs)} matching image pairs")
def __len__(self):
return len(self.image_pairs)
def __getitem__(self, idx):
input_path, target_path = self.image_pairs[idx]
# Load RGBD input (4 channels: RGB + Depth)
input_img = Image.open(input_path).convert('RGBA')
target_img = Image.open(target_path).convert('RGB')
if self.transform:
input_img = self.transform(input_img)
target_img = self.transform(target_img)
return input_img, target_img
class PatchDataset(Dataset):
"""Dataset for extracting salient patches from image pairs"""
def __init__(self, input_dir, target_dir, patch_size=32, patches_per_image=64,
detector='harris', transform=None):
self.input_dir = input_dir
self.target_dir = target_dir
self.patch_size = patch_size
self.patches_per_image = patches_per_image
self.detector = detector
self.transform = transform
# Find all image pairs
input_patterns = ['*.png', '*.jpg', '*.jpeg', '*.PNG', '*.JPG', '*.JPEG']
self.image_pairs = []
for pattern in input_patterns:
input_files = glob.glob(os.path.join(input_dir, pattern))
for input_path in input_files:
filename = os.path.basename(input_path)
target_path = None
for ext in ['png', 'jpg', 'jpeg', 'PNG', 'JPG', 'JPEG']:
base_name = os.path.splitext(filename)[0]
candidate = os.path.join(target_dir, f"{base_name}.{ext}")
if os.path.exists(candidate):
target_path = candidate
break
if target_path:
self.image_pairs.append((input_path, target_path))
if not self.image_pairs:
raise ValueError(f"No matching image pairs found between {input_dir} and {target_dir}")
print(f"Found {len(self.image_pairs)} image pairs")
print(f"Extracting {patches_per_image} patches per image using {detector} detector")
print(f"Total patches: {len(self.image_pairs) * patches_per_image}")
def __len__(self):
return len(self.image_pairs) * self.patches_per_image
def _detect_salient_points(self, img_array):
"""Detect salient points using specified detector"""
gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)
h, w = gray.shape
half_patch = self.patch_size // 2
if self.detector == 'harris':
# Harris corner detection
corners = cv2.goodFeaturesToTrack(gray, self.patches_per_image * 2,
qualityLevel=0.01, minDistance=half_patch)
elif self.detector == 'fast':
# FAST feature detection
fast = cv2.FastFeatureDetector_create(threshold=20)
keypoints = fast.detect(gray, None)
corners = np.array([[kp.pt[0], kp.pt[1]] for kp in keypoints[:self.patches_per_image * 2]])
corners = corners.reshape(-1, 1, 2) if len(corners) > 0 else None
elif self.detector == 'shi-tomasi':
# Shi-Tomasi corner detection (goodFeaturesToTrack with different params)
corners = cv2.goodFeaturesToTrack(gray, self.patches_per_image * 2,
qualityLevel=0.01, minDistance=half_patch,
useHarrisDetector=False)
elif self.detector == 'gradient':
# High-gradient regions
grad_x = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=3)
grad_y = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=3)
gradient_mag = np.sqrt(grad_x**2 + grad_y**2)
# Find top gradient locations
threshold = np.percentile(gradient_mag, 95)
y_coords, x_coords = np.where(gradient_mag > threshold)
if len(x_coords) > self.patches_per_image * 2:
indices = np.random.choice(len(x_coords), self.patches_per_image * 2, replace=False)
x_coords = x_coords[indices]
y_coords = y_coords[indices]
corners = np.array([[x, y] for x, y in zip(x_coords, y_coords)])
corners = corners.reshape(-1, 1, 2) if len(corners) > 0 else None
else:
raise ValueError(f"Unknown detector: {self.detector}")
# Fallback to random if no corners found
if corners is None or len(corners) == 0:
x_coords = np.random.randint(half_patch, w - half_patch, self.patches_per_image)
y_coords = np.random.randint(half_patch, h - half_patch, self.patches_per_image)
corners = np.array([[x, y] for x, y in zip(x_coords, y_coords)])
corners = corners.reshape(-1, 1, 2)
# Filter valid corners (within bounds)
valid_corners = []
for corner in corners:
x, y = int(corner[0][0]), int(corner[0][1])
if half_patch <= x < w - half_patch and half_patch <= y < h - half_patch:
valid_corners.append((x, y))
if len(valid_corners) >= self.patches_per_image:
break
# Fill with random if not enough
while len(valid_corners) < self.patches_per_image:
x = np.random.randint(half_patch, w - half_patch)
y = np.random.randint(half_patch, h - half_patch)
valid_corners.append((x, y))
return valid_corners
def __getitem__(self, idx):
img_idx = idx // self.patches_per_image
patch_idx = idx % self.patches_per_image
input_path, target_path = self.image_pairs[img_idx]
# Load images
input_img = Image.open(input_path).convert('RGBA')
target_img = Image.open(target_path).convert('RGB')
# Detect salient points (use input image for detection)
input_array = np.array(input_img)[:, :, :3] # Use RGB for detection
corners = self._detect_salient_points(input_array)
# Extract patch at specified index
x, y = corners[patch_idx]
half_patch = self.patch_size // 2
# Crop patches
input_patch = input_img.crop((x - half_patch, y - half_patch,
x + half_patch, y + half_patch))
target_patch = target_img.crop((x - half_patch, y - half_patch,
x + half_patch, y + half_patch))
if self.transform:
input_patch = self.transform(input_patch)
target_patch = self.transform(target_patch)
return input_patch, target_patch
class SimpleCNN(nn.Module):
"""CNN for RGBD→grayscale with 7-channel input (RGBD + UV + gray)"""
def __init__(self, num_layers=1, kernel_sizes=None):
super(SimpleCNN, self).__init__()
if kernel_sizes is None:
kernel_sizes = [3] * num_layers
assert len(kernel_sizes) == num_layers, "kernel_sizes must match num_layers"
self.kernel_sizes = kernel_sizes
self.layers = nn.ModuleList()
for i, kernel_size in enumerate(kernel_sizes):
padding = kernel_size // 2
if i < num_layers - 1:
# Inner layers: 7→4 (RGBD output)
self.layers.append(nn.Conv2d(7, 4, kernel_size=kernel_size, padding=padding, bias=True))
else:
# Final layer: 7→1 (grayscale output)
self.layers.append(nn.Conv2d(7, 1, kernel_size=kernel_size, padding=padding, bias=True))
def forward(self, x):
# x: [B,4,H,W] - RGBD input (D = 1/z)
B, C, H, W = x.shape
# Normalize RGBD to [-1,1]
x_norm = (x - 0.5) * 2.0
# Compute coordinates [0,1] then normalize to [-1,1]
y_coords = torch.linspace(0, 1, H, device=x.device).view(1,1,H,1).expand(B,1,H,W)
x_coords = torch.linspace(0, 1, W, device=x.device).view(1,1,1,W).expand(B,1,H,W)
y_coords = (y_coords - 0.5) * 2.0 # [-1,1]
x_coords = (x_coords - 0.5) * 2.0 # [-1,1]
# Compute grayscale from original RGB (Rec.709) and normalize to [-1,1]
gray = 0.2126*x[:,0:1] + 0.7152*x[:,1:2] + 0.0722*x[:,2:3] # [B,1,H,W] in [0,1]
gray = (gray - 0.5) * 2.0 # [-1,1]
# Layer 0
layer0_input = torch.cat([x_norm, x_coords, y_coords, gray], dim=1) # [B,7,H,W]
out = self.layers[0](layer0_input) # [B,4,H,W]
out = torch.tanh(out) # [-1,1]
# Inner layers
for i in range(1, len(self.layers)-1):
layer_input = torch.cat([out, x_coords, y_coords, gray], dim=1)
out = self.layers[i](layer_input)
out = torch.tanh(out)
# Final layer (grayscale output)
final_input = torch.cat([out, x_coords, y_coords, gray], dim=1)
out = self.layers[-1](final_input) # [B,1,H,W]
out = torch.clamp(out, 0.0, 1.0) # Clip to [0,1]
return out.expand(-1, 3, -1, -1)
def generate_layer_shader(output_path, num_layers, kernel_sizes):
"""Generate cnn_layer.wgsl with proper layer switches"""
with open(output_path, 'w') as f:
f.write("// CNN layer shader - uses modular convolution snippets\n")
f.write("// Supports multi-pass rendering with residual connections\n")
f.write("// DO NOT EDIT - Generated by train_cnn.py\n\n")
f.write("@group(0) @binding(0) var smplr: sampler;\n")
f.write("@group(0) @binding(1) var txt: texture_2d<f32>;\n\n")
f.write("#include \"common_uniforms\"\n")
f.write("#include \"cnn_activation\"\n")
# Include necessary conv functions
conv_sizes = set(kernel_sizes)
for ks in sorted(conv_sizes):
f.write(f"#include \"cnn_conv{ks}x{ks}\"\n")
f.write("#include \"cnn_weights_generated\"\n\n")
f.write("struct CNNLayerParams {\n")
f.write(" layer_index: i32,\n")
f.write(" blend_amount: f32,\n")
f.write(" _pad: vec2<f32>,\n")
f.write("};\n\n")
f.write("@group(0) @binding(2) var<uniform> uniforms: CommonUniforms;\n")
f.write("@group(0) @binding(3) var<uniform> params: CNNLayerParams;\n")
f.write("@group(0) @binding(4) var original_input: texture_2d<f32>;\n\n")
f.write("@vertex fn vs_main(@builtin(vertex_index) i: u32) -> @builtin(position) vec4<f32> {\n")
f.write(" var pos = array<vec2<f32>, 3>(\n")
f.write(" vec2<f32>(-1.0, -1.0), vec2<f32>(3.0, -1.0), vec2<f32>(-1.0, 3.0)\n")
f.write(" );\n")
f.write(" return vec4<f32>(pos[i], 0.0, 1.0);\n")
f.write("}\n\n")
f.write("@fragment fn fs_main(@builtin(position) p: vec4<f32>) -> @location(0) vec4<f32> {\n")
f.write(" // Match PyTorch linspace: pixel_idx / (size - 1), not pixel_center / size\n")
f.write(" let uv = (p.xy - 0.5) / (uniforms.resolution - 1.0);\n")
f.write(" let original_raw = textureSample(original_input, smplr, uv);\n")
f.write(" let original = (original_raw - 0.5) * 2.0; // Normalize to [-1,1]\n")
f.write(" let gray = dot(original.rgb, vec3<f32>(0.2126, 0.7152, 0.0722));\n")
f.write(" var result = vec4<f32>(0.0);\n\n")
# Generate layer switches
for layer_idx in range(num_layers):
is_final = layer_idx == num_layers - 1
ks = kernel_sizes[layer_idx]
conv_fn = f"cnn_conv{ks}x{ks}_7to4" if not is_final else f"cnn_conv{ks}x{ks}_7to1"
if layer_idx == 0:
conv_fn_src = f"cnn_conv{ks}x{ks}_7to4_src"
f.write(f" // Layer 0: 7→4 (RGBD output, normalizes [0,1] input)\n")
f.write(f" if (params.layer_index == {layer_idx}) {{\n")
f.write(f" result = {conv_fn_src}(txt, smplr, uv, uniforms.resolution,\n")
f.write(f" weights_layer{layer_idx});\n")
f.write(f" result = cnn_tanh(result);\n")
f.write(f" }}\n")
elif not is_final:
f.write(f" else if (params.layer_index == {layer_idx}) {{\n")
f.write(f" result = {conv_fn}(txt, smplr, uv, uniforms.resolution,\n")
f.write(f" gray, weights_layer{layer_idx});\n")
f.write(f" result = cnn_tanh(result); // Keep in [-1,1]\n")
f.write(f" }}\n")
else:
f.write(f" else if (params.layer_index == {layer_idx}) {{\n")
f.write(f" let gray_out = {conv_fn}(txt, smplr, uv, uniforms.resolution,\n")
f.write(f" gray, weights_layer{layer_idx});\n")
f.write(f" // gray_out in [0,1] (clamped to match PyTorch training)\n")
f.write(f" result = vec4<f32>(gray_out, gray_out, gray_out, 1.0);\n")
f.write(f" return mix(original_raw, result, params.blend_amount); // [0,1]\n")
f.write(f" }}\n")
f.write(" return result; // [-1,1]\n")
f.write("}\n")
def export_weights_to_wgsl(model, output_path, kernel_sizes):
"""Export trained weights to WGSL format (vec4-optimized)"""
with open(output_path, 'w') as f:
f.write("// Auto-generated CNN weights (vec4-optimized)\n")
f.write("// DO NOT EDIT - Generated by train_cnn.py\n\n")
for i, layer in enumerate(model.layers):
weights = layer.weight.data.cpu().numpy()
bias = layer.bias.data.cpu().numpy()
out_ch, in_ch, kh, kw = weights.shape
num_positions = kh * kw
is_final = (i == len(model.layers) - 1)
if is_final:
# Final layer: 7→1, structure: array<vec4<f32>, 18> (9 pos × 2 vec4)
# Input: [rgba, uv_gray_1] → 2 vec4s per position
f.write(f"const weights_layer{i}: array<vec4<f32>, {num_positions * 2}> = array(\n")
for pos in range(num_positions):
row, col = pos // kw, pos % kw
# First vec4: [w0, w1, w2, w3] (rgba)
v0 = [f"{weights[0, in_c, row, col]:.6f}" for in_c in range(4)]
# Second vec4: [w4, w5, w6, bias] (uv, gray, 1)
v1 = [f"{weights[0, in_c, row, col]:.6f}" for in_c in range(4, 7)]
v1.append(f"{bias[0]:.6f}")
f.write(f" vec4<f32>({', '.join(v0)}),\n")
f.write(f" vec4<f32>({', '.join(v1)})")
f.write(",\n" if pos < num_positions-1 else "\n")
f.write(");\n\n")
else:
# Inner layers: 7→4, structure: array<vec4<f32>, 72> (36 entries × 2 vec4)
# Each filter: 2 vec4s for [rgba][uv_gray_1] inputs
num_vec4s = num_positions * 4 * 2
f.write(f"const weights_layer{i}: array<vec4<f32>, {num_vec4s}> = array(\n")
for pos in range(num_positions):
row, col = pos // kw, pos % kw
for out_c in range(4):
# First vec4: [w0, w1, w2, w3] (rgba)
v0 = [f"{weights[out_c, in_c, row, col]:.6f}" for in_c in range(4)]
# Second vec4: [w4, w5, w6, bias] (uv, gray, 1)
v1 = [f"{weights[out_c, in_c, row, col]:.6f}" for in_c in range(4, 7)]
v1.append(f"{bias[out_c]:.6f}")
idx = (pos * 4 + out_c) * 2
f.write(f" vec4<f32>({', '.join(v0)}),\n")
f.write(f" vec4<f32>({', '.join(v1)})")
f.write(",\n" if idx < num_vec4s-2 else "\n")
f.write(");\n\n")
def generate_conv_src_function(kernel_size, output_path):
"""Generate cnn_conv{K}x{K}_7to4_src() function for layer 0 (vec4-optimized)"""
k = kernel_size
num_positions = k * k
radius = k // 2
with open(output_path, 'a') as f:
f.write(f"\n// Source layer: 7→4 channels (vec4-optimized)\n")
f.write(f"// Normalizes [0,1] input to [-1,1] internally\n")
f.write(f"fn cnn_conv{k}x{k}_7to4_src(\n")
f.write(f" tex: texture_2d<f32>,\n")
f.write(f" samp: sampler,\n")
f.write(f" uv: vec2<f32>,\n")
f.write(f" resolution: vec2<f32>,\n")
f.write(f" weights: array<vec4<f32>, {num_positions * 8}>\n")
f.write(f") -> vec4<f32> {{\n")
f.write(f" let step = 1.0 / resolution;\n\n")
# Normalize center pixel for gray channel
f.write(f" let original = (textureSample(tex, samp, uv) - 0.5) * 2.0;\n")
f.write(f" let gray = dot(original.rgb, vec3<f32>(0.2126, 0.7152, 0.0722));\n")
f.write(f" let uv_norm = (uv - 0.5) * 2.0;\n")
f.write(f" let in1 = vec4<f32>(uv_norm, gray, 1.0);\n\n")
f.write(f" var sum = vec4<f32>(0.0);\n")
f.write(f" var pos = 0;\n\n")
# Convolution loop
f.write(f" for (var dy = -{radius}; dy <= {radius}; dy++) {{\n")
f.write(f" for (var dx = -{radius}; dx <= {radius}; dx++) {{\n")
f.write(f" let offset = vec2<f32>(f32(dx), f32(dy)) * step;\n")
f.write(f" let rgbd = (textureSample(tex, samp, uv + offset) - 0.5) * 2.0;\n\n")
# Accumulate with dot products (unrolled)
f.write(f" sum.r += dot(weights[pos+0], rgbd) + dot(weights[pos+1], in1);\n")
f.write(f" sum.g += dot(weights[pos+2], rgbd) + dot(weights[pos+3], in1);\n")
f.write(f" sum.b += dot(weights[pos+4], rgbd) + dot(weights[pos+5], in1);\n")
f.write(f" sum.a += dot(weights[pos+6], rgbd) + dot(weights[pos+7], in1);\n")
f.write(f" pos += 8;\n")
f.write(f" }}\n")
f.write(f" }}\n\n")
f.write(f" return sum;\n")
f.write(f"}}\n")
def generate_conv_final_function(kernel_size, output_path):
"""Generate cnn_conv{K}x{K}_7to1() function for final layer (vec4-optimized)"""
k = kernel_size
num_positions = k * k
radius = k // 2
with open(output_path, 'a') as f:
f.write(f"\n// Final layer: 7→1 channel (vec4-optimized)\n")
f.write(f"// Assumes 'tex' is already normalized to [-1,1]\n")
f.write(f"// Output clamped to [0,1] to match PyTorch training\n")
f.write(f"fn cnn_conv{k}x{k}_7to1(\n")
f.write(f" tex: texture_2d<f32>,\n")
f.write(f" samp: sampler,\n")
f.write(f" uv: vec2<f32>,\n")
f.write(f" resolution: vec2<f32>,\n")
f.write(f" gray: f32,\n")
f.write(f" weights: array<vec4<f32>, {num_positions * 2}>\n")
f.write(f") -> f32 {{\n")
f.write(f" let step = 1.0 / resolution;\n")
f.write(f" let uv_norm = (uv - 0.5) * 2.0;\n")
f.write(f" let in1 = vec4<f32>(uv_norm, gray, 1.0);\n\n")
f.write(f" var sum = 0.0;\n")
f.write(f" var pos = 0;\n\n")
# Convolution loop
f.write(f" for (var dy = -{radius}; dy <= {radius}; dy++) {{\n")
f.write(f" for (var dx = -{radius}; dx <= {radius}; dx++) {{\n")
f.write(f" let offset = vec2<f32>(f32(dx), f32(dy)) * step;\n")
f.write(f" let rgbd = textureSample(tex, samp, uv + offset);\n\n")
# Accumulate with dot products
f.write(f" sum += dot(weights[pos], rgbd) + dot(weights[pos+1], in1);\n")
f.write(f" pos += 2;\n")
f.write(f" }}\n")
f.write(f" }}\n\n")
f.write(f" return clamp(sum, 0.0, 1.0);\n")
f.write(f"}}\n")
def train(args):
"""Main training loop"""
# Setup device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Using device: {device}")
# Prepare dataset
if args.patch_size:
# Patch-based training (preserves natural scale)
transform = transforms.Compose([
transforms.ToTensor(),
])
dataset = PatchDataset(args.input, args.target,
patch_size=args.patch_size,
patches_per_image=args.patches_per_image,
detector=args.detector,
transform=transform)
else:
# Full-image training (resize mode)
transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
])
dataset = ImagePairDataset(args.input, args.target, transform=transform)
dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=True)
# Parse kernel sizes
kernel_sizes = [int(k) for k in args.kernel_sizes.split(',')]
if len(kernel_sizes) == 1 and args.layers > 1:
kernel_sizes = kernel_sizes * args.layers
# Create model
model = SimpleCNN(num_layers=args.layers, kernel_sizes=kernel_sizes).to(device)
# Loss and optimizer
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=args.learning_rate)
# Resume from checkpoint
start_epoch = 0
if args.resume:
if os.path.exists(args.resume):
print(f"Loading checkpoint from {args.resume}...")
checkpoint = torch.load(args.resume, map_location=device)
model.load_state_dict(checkpoint['model_state'])
optimizer.load_state_dict(checkpoint['optimizer_state'])
start_epoch = checkpoint['epoch'] + 1
print(f"Resumed from epoch {start_epoch}")
else:
print(f"Warning: Checkpoint file '{args.resume}' not found, starting from scratch")
# Training loop
print(f"\nTraining for {args.epochs} epochs (starting from epoch {start_epoch})...")
for epoch in range(start_epoch, args.epochs):
epoch_loss = 0.0
for batch_idx, (inputs, targets) in enumerate(dataloader):
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
epoch_loss += loss.item()
avg_loss = epoch_loss / len(dataloader)
if (epoch + 1) % 10 == 0:
print(f"Epoch [{epoch+1}/{args.epochs}], Loss: {avg_loss:.6f}")
# Save checkpoint
if args.checkpoint_every > 0 and (epoch + 1) % args.checkpoint_every == 0:
checkpoint_dir = args.checkpoint_dir or 'training/checkpoints'
os.makedirs(checkpoint_dir, exist_ok=True)
checkpoint_path = os.path.join(checkpoint_dir, f'checkpoint_epoch_{epoch+1}.pth')
torch.save({
'epoch': epoch,
'model_state': model.state_dict(),
'optimizer_state': optimizer.state_dict(),
'loss': avg_loss,
'kernel_sizes': kernel_sizes,
'num_layers': args.layers
}, checkpoint_path)
print(f"Saved checkpoint to {checkpoint_path}")
# Export weights and shader
output_path = args.output or 'workspaces/main/shaders/cnn/cnn_weights_generated.wgsl'
print(f"\nExporting weights to {output_path}...")
os.makedirs(os.path.dirname(output_path), exist_ok=True)
export_weights_to_wgsl(model, output_path, kernel_sizes)
# Generate layer shader
shader_dir = os.path.dirname(output_path)
shader_path = os.path.join(shader_dir, 'cnn_layer.wgsl')
print(f"Generating layer shader to {shader_path}...")
generate_layer_shader(shader_path, args.layers, kernel_sizes)
# Generate _src and 7to1 variants for kernel sizes
for ks in set(kernel_sizes):
conv_path = os.path.join(shader_dir, f'cnn_conv{ks}x{ks}.wgsl')
if not os.path.exists(conv_path):
print(f"Warning: {conv_path} not found, skipping function generation")
continue
with open(conv_path, 'r') as f:
content = f.read()
# Generate _src variant (skip 3x3, already exists)
if ks != 3 and f"cnn_conv{ks}x{ks}_7to4_src" not in content:
generate_conv_src_function(ks, conv_path)
print(f"Added _src variant to {conv_path}")
with open(conv_path, 'r') as f:
content = f.read()
# Generate 7to1 final layer with clamp (all kernel sizes)
if f"cnn_conv{ks}x{ks}_7to1" not in content:
generate_conv_final_function(ks, conv_path)
print(f"Added 7to1 variant with clamp to {conv_path}")
elif "clamp(sum, 0.0, 1.0)" not in content:
print(f"Warning: {conv_path} has 7to1 but missing clamp - manual fix needed")
print("Training complete!")
def export_from_checkpoint(checkpoint_path, output_path=None):
"""Export WGSL files from checkpoint without training"""
if not os.path.exists(checkpoint_path):
print(f"Error: Checkpoint file '{checkpoint_path}' not found")
sys.exit(1)
print(f"Loading checkpoint from {checkpoint_path}...")
checkpoint = torch.load(checkpoint_path, map_location='cpu')
kernel_sizes = checkpoint['kernel_sizes']
num_layers = checkpoint['num_layers']
# Recreate model
model = SimpleCNN(num_layers=num_layers, kernel_sizes=kernel_sizes)
model.load_state_dict(checkpoint['model_state'])
# Export weights
output_path = output_path or 'workspaces/main/shaders/cnn/cnn_weights_generated.wgsl'
print(f"Exporting weights to {output_path}...")
os.makedirs(os.path.dirname(output_path), exist_ok=True)
export_weights_to_wgsl(model, output_path, kernel_sizes)
# Generate layer shader
shader_dir = os.path.dirname(output_path)
shader_path = os.path.join(shader_dir, 'cnn_layer.wgsl')
print(f"Generating layer shader to {shader_path}...")
generate_layer_shader(shader_path, num_layers, kernel_sizes)
# Generate _src and 7to1 variants for kernel sizes
for ks in set(kernel_sizes):
conv_path = os.path.join(shader_dir, f'cnn_conv{ks}x{ks}.wgsl')
if not os.path.exists(conv_path):
print(f"Warning: {conv_path} not found, skipping function generation")
continue
with open(conv_path, 'r') as f:
content = f.read()
# Generate _src variant (skip 3x3, already exists)
if ks != 3 and f"cnn_conv{ks}x{ks}_7to4_src" not in content:
generate_conv_src_function(ks, conv_path)
print(f"Added _src variant to {conv_path}")
with open(conv_path, 'r') as f:
content = f.read()
# Generate 7to1 final layer with clamp (all kernel sizes)
if f"cnn_conv{ks}x{ks}_7to1" not in content:
generate_conv_final_function(ks, conv_path)
print(f"Added 7to1 variant with clamp to {conv_path}")
elif "clamp(sum, 0.0, 1.0)" not in content:
print(f"Warning: {conv_path} has 7to1 but missing clamp - manual fix needed")
print("Export complete!")
def infer_from_checkpoint(checkpoint_path, input_path, output_path, patch_size=32):
"""Run patch-based inference to match training distribution"""
if not os.path.exists(checkpoint_path):
print(f"Error: Checkpoint '{checkpoint_path}' not found")
sys.exit(1)
if not os.path.exists(input_path):
print(f"Error: Input image '{input_path}' not found")
sys.exit(1)
print(f"Loading checkpoint from {checkpoint_path}...")
checkpoint = torch.load(checkpoint_path, map_location='cpu')
# Reconstruct model
model = SimpleCNN(
num_layers=checkpoint['num_layers'],
kernel_sizes=checkpoint['kernel_sizes']
)
model.load_state_dict(checkpoint['model_state'])
model.eval()
# Load image
print(f"Loading input image: {input_path}")
img = Image.open(input_path).convert('RGBA')
W, H = img.size
# Tile into patches
print(f"Processing {patch_size}×{patch_size} patches...")
output = np.zeros((H, W, 3), dtype=np.float32)
for y in range(0, H, patch_size):
for x in range(0, W, patch_size):
x_end = min(x + patch_size, W)
y_end = min(y + patch_size, H)
# Extract patch
patch = img.crop((x, y, x_end, y_end))
patch_tensor = transforms.ToTensor()(patch).unsqueeze(0) # [1,4,h,w]
# Inference
with torch.no_grad():
out_patch = model(patch_tensor) # [1,3,h,w]
# Write to output
out_np = out_patch.squeeze(0).permute(1, 2, 0).numpy()
output[y:y_end, x:x_end] = out_np
# Save
print(f"Saving output to: {output_path}")
os.makedirs(os.path.dirname(output_path), exist_ok=True)
output_img = Image.fromarray((output * 255).astype(np.uint8))
output_img.save(output_path)
print("Done!")
def main():
parser = argparse.ArgumentParser(description='Train CNN for image-to-image transformation')
parser.add_argument('--input', help='Input image directory (training) or single image (inference)')
parser.add_argument('--target', help='Target image directory')
parser.add_argument('--layers', type=int, default=1, help='Number of CNN layers (default: 1)')
parser.add_argument('--kernel_sizes', default='3', help='Comma-separated kernel sizes (default: 3)')
parser.add_argument('--epochs', type=int, default=100, help='Number of training epochs (default: 100)')
parser.add_argument('--batch_size', type=int, default=4, help='Batch size (default: 4)')
parser.add_argument('--learning_rate', type=float, default=0.001, help='Learning rate (default: 0.001)')
parser.add_argument('--output', help='Output path (WGSL for training/export, PNG for inference)')
parser.add_argument('--checkpoint-every', type=int, default=0, help='Save checkpoint every N epochs (default: 0 = disabled)')
parser.add_argument('--checkpoint-dir', help='Checkpoint directory (default: training/checkpoints)')
parser.add_argument('--resume', help='Resume from checkpoint file')
parser.add_argument('--export-only', help='Export WGSL from checkpoint without training')
parser.add_argument('--infer', help='Run inference on single image (requires --export-only for checkpoint)')
parser.add_argument('--patch-size', type=int, help='Extract patches of this size (e.g., 32) instead of resizing (default: None = resize to 256x256)')
parser.add_argument('--patches-per-image', type=int, default=64, help='Number of patches to extract per image (default: 64)')
parser.add_argument('--detector', default='harris', choices=['harris', 'fast', 'shi-tomasi', 'gradient'],
help='Salient point detector for patch extraction (default: harris)')
args = parser.parse_args()
# Inference mode
if args.infer:
checkpoint = args.export_only
if not checkpoint:
print("Error: --infer requires --export-only <checkpoint>")
sys.exit(1)
output_path = args.output or 'inference_output.png'
patch_size = args.patch_size or 32
infer_from_checkpoint(checkpoint, args.infer, output_path, patch_size)
return
# Export-only mode
if args.export_only:
export_from_checkpoint(args.export_only, args.output)
return
# Validate directories for training
if not args.input or not args.target:
print("Error: --input and --target required for training (or use --export-only)")
sys.exit(1)
if not os.path.isdir(args.input):
print(f"Error: Input directory '{args.input}' does not exist")
sys.exit(1)
if not os.path.isdir(args.target):
print(f"Error: Target directory '{args.target}' does not exist")
sys.exit(1)
train(args)
if __name__ == "__main__":
main()
|