1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
|
#include <cmath>
#include <cstdio>
#include <fstream>
#include <iostream>
#include <map>
#include <sstream>
#include <string>
#include <vector>
// Enum to differentiate between sample types
enum SampleType {
GENERATED,
ASSET
};
// Convert note name (e.g., "NOTE_C4", "NOTE_A#3", "NOTE_Eb2") to frequency in Hz
// CRITICAL: Now requires "NOTE_" prefix (changed to prevent ASSET_* confusion)
static float note_name_to_freq(const std::string& note_name) {
if (note_name.size() < 7) // "NOTE_" + note + octave minimum
return 0.0f;
// Skip "NOTE_" prefix (5 characters) to get to the actual note
const char* str = note_name.c_str() + 5;
char note_char = str[0];
int semitone = 0;
// Map note name to semitone (C=0, D=2, E=4, F=5, G=7, A=9, B=11)
switch (note_char) {
case 'C':
semitone = 0;
break;
case 'D':
semitone = 2;
break;
case 'E':
semitone = 4;
break;
case 'F':
semitone = 5;
break;
case 'G':
semitone = 7;
break;
case 'A':
semitone = 9;
break;
case 'B':
semitone = 11;
break;
default:
return 0.0f; // Invalid note
}
int idx = 1;
// Check for sharp (#) or flat (b)
if (str[idx] == '#') {
semitone++;
idx++;
} else if (str[idx] == 'b') {
semitone--;
idx++;
}
// Parse octave
int octave = atoi(&str[idx]);
// A4 = 440 Hz is our reference (A4 = octave 4, semitone 9)
// Formula: freq = 440 * 2^((semitone - 9 + 12*(octave - 4)) / 12)
const int midi_note = semitone + 12 * (octave + 1);
const int a4_midi = 69; // A4 = MIDI note 69
const float freq = 440.0f * powf(2.0f, (midi_note - a4_midi) / 12.0f);
return freq;
}
static bool is_note_name(const std::string& name) {
// CRITICAL FIX: Require "NOTE_" prefix to avoid false positives with ASSET_*
// Valid: NOTE_E2, NOTE_A4, NOTE_C#3, NOTE_Bb5
// Invalid: ASSET_KICK_1, E2 (no prefix), etc.
if (name.size() < 7) // "NOTE_" + note + octave = minimum 7 chars (e.g. "NOTE_C4")
return false;
if (name.substr(0, 5) != "NOTE_")
return false;
// Check that the 6th character (after "NOTE_") is a valid note letter A-G
const char note_letter = name[5];
return (note_letter >= 'A' && note_letter <= 'G');
}
struct Sample {
std::string name;
SampleType type = GENERATED; // Default to GENERATED
std::string asset_id_name; // Store AssetId name for asset samples
// Parameters for generated samples
float freq, dur, amp, attack, harmonic_decay;
int harmonics;
};
struct Event {
float beat;
std::string sample_name;
float volume, pan;
};
struct Pattern {
std::string name;
std::vector<Event> events;
};
struct Trigger {
float time;
std::string pattern_name;
};
int main(int argc, char** argv) {
if (argc < 3) {
fprintf(stderr, "Usage: %s <input.track> <output.cc>\n", argv[0]);
return 1;
}
std::ifstream in(argv[1]);
if (!in.is_open()) {
fprintf(stderr, "Could not open input file: %s\n", argv[1]);
return 1;
}
float bpm = 120.0f;
std::vector<Sample> samples;
std::map<std::string, int> sample_map;
std::vector<Pattern> patterns;
std::map<std::string, int> pattern_map;
std::vector<Trigger> score;
std::string line;
std::string current_section = "";
while (std::getline(in, line)) {
if (line.empty() || line[0] == '#')
continue;
std::stringstream ss(line);
std::string cmd;
ss >> cmd;
if (cmd == "BPM") {
ss >> bpm;
} else if (cmd == "SAMPLE") {
Sample s;
std::string name;
ss >> name;
if (name.back() == ',')
name.pop_back();
s.name = name;
if (name.rfind("ASSET_", 0) == 0) {
s.type = ASSET;
s.asset_id_name = name;
// Parameters for asset samples are ignored, so we don't parse them
// here. However, we must consume the rest of the line to avoid issues
// if a comma is present.
std::string dummy;
while (ss >> dummy) {
} // Consume rest of line
} else {
s.type = GENERATED;
// Very simple parsing: freq, dur, amp, attack, harmonics,
// harmonic_decay
char comma;
ss >> s.freq >> comma >> s.dur >> comma >> s.amp >> comma >> s.attack >>
comma >> s.harmonics >> comma >> s.harmonic_decay;
}
sample_map[s.name] = samples.size();
samples.push_back(s);
} else if (cmd == "PATTERN") {
Pattern p;
ss >> p.name;
current_section = "PATTERN:" + p.name;
patterns.push_back(p);
pattern_map[p.name] = patterns.size() - 1;
} else if (cmd == "SCORE") {
current_section = "SCORE";
} else {
if (current_section.rfind("PATTERN:", 0) == 0) {
// Parse event: beat, sample, vol, pan
Event e;
float beat;
std::stringstream ss2(line);
ss2 >> beat;
char comma;
ss2 >> comma;
std::string sname;
ss2 >> sname;
if (sname.back() == ',')
sname.pop_back();
e.beat = beat;
e.sample_name = sname;
ss2 >> e.volume >> comma >> e.pan;
// Auto-create SAMPLE entry for note names (e.g., "E2", "A4")
if (is_note_name(sname) && sample_map.find(sname) == sample_map.end()) {
Sample s;
s.name = sname;
s.type = GENERATED;
s.freq = note_name_to_freq(sname);
s.dur = 0.5f; // Default note duration
s.amp = 1.0f; // Default amplitude
s.attack = 0.01f; // Default attack
s.harmonics = 3; // Default harmonics
s.harmonic_decay = 0.6f; // Default decay
sample_map[s.name] = samples.size();
samples.push_back(s);
}
patterns.back().events.push_back(e);
} else if (current_section == "SCORE") {
Trigger t;
float time;
std::stringstream ss2(line);
ss2 >> time;
char comma;
ss2 >> comma;
std::string pname;
ss2 >> pname;
t.time = time;
t.pattern_name = pname;
score.push_back(t);
}
}
}
FILE* out_file = fopen(argv[2], "w");
if (!out_file) {
fprintf(stderr, "Could not open output file: %s\n", argv[2]);
return 1;
}
fprintf(out_file, "// Generated by tracker_compiler. Do not edit.\n\n");
fprintf(out_file, "#include \"audio/tracker.h\"\n\n");
// Need to include assets.h for AssetId enum
fprintf(out_file, "#include \"generated/assets.h\"\n\n");
fprintf(out_file, "const NoteParams g_tracker_samples[] = {\n");
for (const auto& s : samples) {
if (s.type == GENERATED) {
fprintf(out_file,
" { %.1ff, %.2ff, %.1ff, %.2ff, 0.0f, 0.0f, 0.0f, %d, %.1ff, "
"0.0f, 0.0f }, // %s\n",
s.freq, s.dur, s.amp, s.attack, s.harmonics, s.harmonic_decay,
s.name.c_str());
} else {
fprintf(out_file, " { 0 }, // %s (ASSET)\n", s.name.c_str());
}
}
fprintf(out_file, "};\n");
fprintf(out_file, "const uint32_t g_tracker_samples_count = %zu;\n\n",
samples.size());
fprintf(out_file, "const AssetId g_tracker_sample_assets[] = {\n");
for (const auto& s : samples) {
if (s.type == ASSET) {
fprintf(out_file, " AssetId::%s,\n", s.asset_id_name.c_str());
} else {
fprintf(out_file, " AssetId::ASSET_LAST_ID,\n");
}
}
fprintf(out_file, "};\n\n");
for (const auto& p : patterns) {
fprintf(out_file, "static const TrackerEvent PATTERN_EVENTS_%s[] = {\n",
p.name.c_str());
for (const auto& e : p.events) {
// When referencing a sample, we need to get its index or synth_id.
// If it's an asset, the name starts with ASSET_.
// For now, assume sample_map is used for both generated and asset
// samples. This will need refinement if asset samples are not in
// sample_map directly.
fprintf(out_file, " { %.1ff, %d, %.1ff, %.1ff },\n", e.beat,
sample_map[e.sample_name], e.volume, e.pan);
}
fprintf(out_file, "};\n");
}
fprintf(out_file, "\n");
fprintf(out_file, "const TrackerPattern g_tracker_patterns[] = {\n");
for (const auto& p : patterns) {
fprintf(out_file, " { PATTERN_EVENTS_%s, %zu, 4.0f }, // %s\n",
p.name.c_str(), p.events.size(), p.name.c_str());
}
fprintf(out_file, "};\n");
fprintf(out_file, "const uint32_t g_tracker_patterns_count = %zu;\n\n",
patterns.size());
fprintf(out_file,
"static const TrackerPatternTrigger SCORE_TRIGGERS[] = {\n");
for (const auto& t : score) {
fprintf(out_file, " { %.1ff, %d },\n", t.time,
pattern_map[t.pattern_name]);
}
fprintf(out_file, "};\n\n");
fprintf(out_file, "const TrackerScore g_tracker_score = {\n");
fprintf(out_file, " SCORE_TRIGGERS, %zu, %.1ff\n", score.size(), bpm);
fprintf(out_file, "};\n\n");
// ============================================================================
// RESOURCE USAGE ANALYSIS
// ============================================================================
// Count unique samples
int asset_sample_count = 0;
int generated_sample_count = 0;
for (const auto& s : samples) {
if (s.type == ASSET) {
asset_sample_count++;
} else {
generated_sample_count++;
}
}
// Calculate maximum simultaneous pattern triggers
std::map<float, int> time_pattern_count;
for (const auto& t : score) {
time_pattern_count[t.time]++;
}
int max_simultaneous_patterns = 0;
for (const auto& entry : time_pattern_count) {
if (entry.second > max_simultaneous_patterns) {
max_simultaneous_patterns = entry.second;
}
}
// Calculate maximum polyphony (events per pattern on average)
int total_events = 0;
for (const auto& p : patterns) {
total_events += p.events.size();
}
const int avg_events_per_pattern = patterns.empty() ? 0 : total_events / patterns.size();
const int estimated_max_polyphony = max_simultaneous_patterns * avg_events_per_pattern;
// Conservative recommendations with safety margins
// - Each asset sample needs 1 spectrogram slot (shared across all events)
// - Each generated note needs 1 spectrogram slot PER EVENT (no caching yet)
// - Add 50% safety margin for peak moments
const int min_spectrograms = asset_sample_count + (generated_sample_count * estimated_max_polyphony);
const int recommended_spectrograms = (int)(min_spectrograms * 1.5f);
const int recommended_voices = estimated_max_polyphony * 2;
fprintf(out_file, "// ============================================================\n");
fprintf(out_file, "// RESOURCE USAGE ANALYSIS (for synth.h configuration)\n");
fprintf(out_file, "// ============================================================\n");
fprintf(out_file, "// Total samples: %d (%d assets + %d generated notes)\n",
(int)samples.size(), asset_sample_count, generated_sample_count);
fprintf(out_file, "// Max simultaneous pattern triggers: %d\n",
max_simultaneous_patterns);
fprintf(out_file, "// Estimated max polyphony: %d voices\n",
estimated_max_polyphony);
fprintf(out_file, "// \n");
fprintf(out_file, "// REQUIRED (minimum to avoid pool exhaustion):\n");
fprintf(out_file, "// MAX_VOICES: %d\n", estimated_max_polyphony);
fprintf(out_file, "// MAX_SPECTROGRAMS: %d (no caching)\n", min_spectrograms);
fprintf(out_file, "// \n");
fprintf(out_file, "// RECOMMENDED (with 50%% safety margin):\n");
fprintf(out_file, "// MAX_VOICES: %d\n", recommended_voices);
fprintf(out_file, "// MAX_SPECTROGRAMS: %d (no caching)\n", recommended_spectrograms);
fprintf(out_file, "// \n");
fprintf(out_file, "// NOTE: With spectrogram caching by note parameters,\n");
fprintf(out_file, "// MAX_SPECTROGRAMS could be reduced to ~%d\n",
asset_sample_count + generated_sample_count);
fprintf(out_file, "// ============================================================\n\n");
fclose(out_file);
printf("Tracker compilation successful.\n");
printf(" Patterns: %zu\n", patterns.size());
printf(" Score triggers: %zu\n", score.size());
printf(" Samples: %d (%d assets + %d generated)\n",
(int)samples.size(), asset_sample_count, generated_sample_count);
printf(" Max simultaneous patterns: %d\n", max_simultaneous_patterns);
printf(" Estimated max polyphony: %d voices\n", estimated_max_polyphony);
printf("\n");
printf("RESOURCE REQUIREMENTS:\n");
printf(" Required MAX_VOICES: %d\n", estimated_max_polyphony);
printf(" Required MAX_SPECTROGRAMS: %d (without caching)\n", min_spectrograms);
printf(" Recommended MAX_VOICES: %d (with safety margin)\n", recommended_voices);
printf(" Recommended MAX_SPECTROGRAMS: %d (with safety margin)\n", recommended_spectrograms);
printf(" With caching: MAX_SPECTROGRAMS could be ~%d\n",
asset_sample_count + generated_sample_count);
return 0;
}
|