summaryrefslogtreecommitdiff
path: root/tools/spectral_editor/dct.js
blob: deff8a9ae3867aad6704423b2b704600da0ee389 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
const dctSize = 512; // Default DCT size, read from header

// --- Utility Functions for Audio Processing ---
// JavaScript equivalent of C++ idct_512
function javascript_idct_512(input) {
    const output = new Float32Array(dctSize);
    const PI = Math.PI;
    const N = dctSize;

    for (let n = 0; n < N; ++n) {
        let sum = input[0] / 2.0;
        for (let k = 1; k < N; ++k) {
            sum += input[k] * Math.cos((PI / N) * k * (n + 0.5));
        }
        output[n] = sum * (2.0 / N);
    }
    return output;
}

// Hanning window for smooth audio transitions (JavaScript equivalent)
function hanningWindow(size) {
    const window = new Float32Array(size);
    const PI = Math.PI;
    for (let i = 0; i < size; i++) {
        window[i] = 0.5 * (1 - Math.cos((2 * PI * i) / (size - 1)));
    }
    return window;
}

const hanningWindowArray = hanningWindow(dctSize); // Pre-calculate window

// ============================================================================
// FFT-based DCT/IDCT Implementation
// ============================================================================
// Fast Fourier Transform using Radix-2 Cooley-Tukey algorithm
// This implementation MUST match the C++ version in src/audio/fft.cc exactly

// Bit-reversal permutation (in-place)
// Reorders array elements by reversing their binary indices
function bitReversePermute(real, imag, N) {
    // Calculate number of bits needed
    let temp_bits = N;
    let num_bits = 0;
    while (temp_bits > 1) {
        temp_bits >>= 1;
        num_bits++;
    }

    for (let i = 0; i < N; i++) {
        // Compute bit-reversed index
        let j = 0;
        let temp = i;
        for (let b = 0; b < num_bits; b++) {
            j = (j << 1) | (temp & 1);
            temp >>= 1;
        }

        // Swap if j > i (to avoid swapping twice)
        if (j > i) {
            const tmp_real = real[i];
            const tmp_imag = imag[i];
            real[i] = real[j];
            imag[i] = imag[j];
            real[j] = tmp_real;
            imag[j] = tmp_imag;
        }
    }
}

// In-place radix-2 FFT (after bit-reversal)
// direction: +1 for forward FFT, -1 for inverse FFT
function fftRadix2(real, imag, N, direction) {
    const PI = Math.PI;

    // Butterfly operations
    for (let stage_size = 2; stage_size <= N; stage_size *= 2) {
        const half_stage = stage_size / 2;
        const angle = direction * 2.0 * PI / stage_size;

        // Precompute twiddle factors for this stage
        let wr = 1.0;
        let wi = 0.0;
        const wr_delta = Math.cos(angle);
        const wi_delta = Math.sin(angle);

        for (let k = 0; k < half_stage; k++) {
            // Apply butterfly to all groups at this stage
            for (let group_start = k; group_start < N; group_start += stage_size) {
                const i = group_start;
                const j = group_start + half_stage;

                // Complex multiplication: (real[j] + i*imag[j]) * (wr + i*wi)
                const temp_real = real[j] * wr - imag[j] * wi;
                const temp_imag = real[j] * wi + imag[j] * wr;

                // Butterfly operation
                real[j] = real[i] - temp_real;
                imag[j] = imag[i] - temp_imag;
                real[i] = real[i] + temp_real;
                imag[i] = imag[i] + temp_imag;
            }

            // Update twiddle factor for next k (rotation)
            const wr_old = wr;
            wr = wr_old * wr_delta - wi * wi_delta;
            wi = wr_old * wi_delta + wi * wr_delta;
        }
    }
}

// Forward FFT: Time domain → Frequency domain
function fftForward(real, imag, N) {
    bitReversePermute(real, imag, N);
    fftRadix2(real, imag, N, +1);
}

// Inverse FFT: Frequency domain → Time domain
function fftInverse(real, imag, N) {
    bitReversePermute(real, imag, N);
    fftRadix2(real, imag, N, -1);

    // Scale by 1/N
    const scale = 1.0 / N;
    for (let i = 0; i < N; i++) {
        real[i] *= scale;
        imag[i] *= scale;
    }
}

// DCT-II via FFT using double-and-mirror method (matches C++ dct_fft)
// This is a more robust algorithm that avoids reordering issues
function javascript_dct_fft(input, N) {
    const PI = Math.PI;

    // Allocate arrays for 2N-point FFT
    const M = 2 * N;
    const real = new Float32Array(M);
    const imag = new Float32Array(M);

    // Pack input: [x[0], x[1], ..., x[N-1], x[N-1], x[N-2], ..., x[1]]
    // This creates even symmetry for real-valued DCT
    for (let i = 0; i < N; i++) {
        real[i] = input[i];
    }
    for (let i = 0; i < N; i++) {
        real[N + i] = input[N - 1 - i];
    }
    // imag is already zeros (Float32Array default)

    // Apply 2N-point FFT
    fftForward(real, imag, M);

    // Extract DCT coefficients
    // DCT[k] = Re{FFT[k] * exp(-j*pi*k/(2*N))} * normalization
    // Note: Need to divide by 2 because we doubled the signal length
    const output = new Float32Array(N);
    for (let k = 0; k < N; k++) {
        const angle = -PI * k / (2.0 * N);
        const wr = Math.cos(angle);
        const wi = Math.sin(angle);

        // Complex multiplication: (real + j*imag) * (wr + j*wi)
        // Real part: real*wr - imag*wi
        const dct_value = real[k] * wr - imag[k] * wi;

        // Apply DCT-II normalization (divide by 2 for double-length FFT)
        if (k === 0) {
            output[k] = dct_value * Math.sqrt(1.0 / N) / 2.0;
        } else {
            output[k] = dct_value * Math.sqrt(2.0 / N) / 2.0;
        }
    }

    return output;
}

// IDCT (Inverse DCT-II) via FFT using double-and-mirror method (matches C++ idct_fft)
function javascript_idct_fft(input, N) {
    const PI = Math.PI;

    // Allocate arrays for 2N-point FFT
    const M = 2 * N;
    const real = new Float32Array(M);
    const imag = new Float32Array(M);

    // Prepare FFT input from DCT coefficients
    // IDCT = Re{IFFT[DCT * exp(j*pi*k/(2*N))]} * 2
    for (let k = 0; k < N; k++) {
        const angle = PI * k / (2.0 * N);  // Positive for inverse
        const wr = Math.cos(angle);
        const wi = Math.sin(angle);

        // Apply inverse normalization
        let scaled_input;
        if (k === 0) {
            scaled_input = input[k] * Math.sqrt(N) * 2.0;
        } else {
            scaled_input = input[k] * Math.sqrt(N / 2.0) * 2.0;
        }

        // Complex multiplication: DCT[k] * exp(j*theta)
        real[k] = scaled_input * wr;
        imag[k] = scaled_input * wi;
    }

    // Fill second half with conjugate symmetry (for real output)
    for (let k = 1; k < N; k++) {
        real[M - k] = real[k];
        imag[M - k] = -imag[k];
    }

    // Apply inverse FFT
    fftInverse(real, imag, M);

    // Extract first N samples (real part only, imag should be ~0)
    const output = new Float32Array(N);
    for (let i = 0; i < N; i++) {
        output[i] = real[i];
    }

    return output;
}

// Convenience wrappers for dctSize = 512 (backward compatible)
function javascript_dct_512_fft(input) {
    return javascript_dct_fft(input, dctSize);
}

function javascript_idct_512_fft(input) {
    return javascript_idct_fft(input, dctSize);
}