1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
|
// MQ Synthesizer
// Harmonic oscillator bank for sinusoidal synthesis, plus two-pole resonator mode
// Deterministic LCG PRNG
function randFloat(seed, min, max) {
seed = (1664525 * seed + 1013904223) % 0x100000000;
return min + (seed / 0x100000000) * (max - min);
}
// Build harmonic list from harmonics config.
// Fundamental (ratio=1.0, ampMult=1.0) is always first.
// Then harmonics at n*freq_mult for n=1,2,... with ampMult=decay^n (added on top).
function buildHarmonics(harmonics) {
const decay = Math.min(harmonics.decay ?? 0.0, 0.90);
const freqMult = harmonics.freq_mult ?? 2.0;
const result = [{ ratio: 1.0, ampMult: 1.0 }]; // fundamental always
if (decay > 0) {
for (let n = 1; ; ++n) {
const ampMult = Math.pow(decay, n);
if (ampMult < 0.001) break;
result.push({ ratio: n * freqMult, ampMult });
}
}
return result;
}
// Synthesize audio from MQ partials
// partials: array of {freqCurve (with a0-a3 for amp), harmonics?, resonator?}
// harmonics: {decay, freq_mult, jitter, spread}
// resonator: {enabled, r, gainComp} — two-pole resonator mode per partial
// integratePhase: true = accumulate 2π*f/SR per sample (correct for varying freq)
// false = 2π*f*t (simpler, only correct for constant freq)
// options.k1: LP coefficient in (0,1] — omit to bypass
// options.k2: HP coefficient in (0,1] — omit to bypass
// options.disableJitter: true = suppress per-sample frequency jitter
function synthesizeMQ(partials, sampleRate, duration, integratePhase = true, options = {}) {
const numSamples = Math.floor(sampleRate * duration);
const pcm = new Float32Array(numSamples);
const defaultHarmonics = {
decay: 0.0,
freq_mult: 1.0,
jitter: 0.05,
spread: 0.02
};
// Pre-build per-partial configs with fixed spread/jitter and phase accumulators
const configs = [];
for (let p = 0; p < partials.length; ++p) {
const partial = partials[p];
const fc = partial.freqCurve;
if ((partial.resonator && partial.resonator.enabled) || options.forceResonator) {
// --- Two-pole resonator mode ---
// Driven by band-limited noise scaled by amp curve.
// r controls pole radius (bandwidth): r→1 = narrow, r→0 = wide.
// gainNorm = sqrt(1 - r²) normalises steady-state output power to ~A.
const res = partial.resonator || {};
const r = options.forceRGain ? clamp(options.globalR, 0, 0.9999)
: (res.r != null ? clamp(res.r, 0, 0.9999) : 0.995);
const gainComp = options.forceRGain ? options.globalGain
: (res.gainComp != null ? res.gainComp : 1.0);
const gainNorm = Math.sqrt(Math.max(0, 1.0 - r * r));
// Build harmonic list (spread not applied to resonator; jitter modulates center freq)
const harm = partial.harmonics || defaultHarmonics;
const harmonicList = buildHarmonics(harm);
const jitter = options.disableJitter ? 0.0 : (harm.jitter ?? 0.0);
configs.push({
mode: 'resonator',
fc,
r, gainComp, gainNorm,
harmonicList,
jitter,
y1: new Float64Array(harmonicList.length),
y2: new Float64Array(harmonicList.length),
noiseSeed: ((p * 1664525 + 1013904223) & 0xFFFFFFFF) >>> 0,
jitterSeed: ((p * 6364136223 + 1442695040) & 0xFFFFFFFF) >>> 0
});
} else {
// --- Sinusoidal (harmonic) mode ---
const harm = partial.harmonics || defaultHarmonics;
const spread = harm.spread ?? 0.0;
const jitter = options.disableJitter ? 0.0 : (harm.jitter ?? 0.0);
const harmonicList = buildHarmonics(harm);
const replicaData = [];
for (let h = 0; h < harmonicList.length; ++h) {
const hc = harmonicList[h];
const spreadVal = randFloat(p * 67890 + h * 999, -spread, spread);
const initPhase = randFloat(p * 67890 + h, 0.0, 1.0) * 2.0 * Math.PI;
const jitterSeed = ((p * 12345 + h * 67890 + 999) & 0xFFFFFFFF) >>> 0;
replicaData.push({ ratio: hc.ratio, ampMult: hc.ampMult, spread: spreadVal, phase: initPhase, jitterSeed });
}
configs.push({ mode: 'sinusoid', fc, replicaData, jitter });
}
}
for (let i = 0; i < numSamples; ++i) {
const t = i / sampleRate;
let sample = 0.0;
for (let p = 0; p < configs.length; ++p) {
const cfg = configs[p];
const {fc} = cfg;
if (cfg.mode === 'resonator') {
if (t < fc.t0 || t > fc.t3) {
cfg.y1.fill(0.0); cfg.y2.fill(0.0); continue;
}
const f0 = evalBezier(fc, t);
const A = evalBezierAmp(fc, t);
// LCG noise excitation (deterministic per-partial, shared across harmonics)
cfg.noiseSeed = (Math.imul(1664525, cfg.noiseSeed) + 1013904223) >>> 0;
const noise = cfg.noiseSeed / 0x100000000 * 2.0 - 1.0;
// Per-sample frequency jitter on resonator center freq
cfg.jitterSeed = (Math.imul(1664525, cfg.jitterSeed) + 1013904223) >>> 0;
const jNoise = cfg.jitterSeed / 0x100000000 * 2.0 - 1.0;
const f0j = f0 * (1.0 + jNoise * cfg.jitter);
for (let h = 0; h < cfg.harmonicList.length; ++h) {
const hc = cfg.harmonicList[h];
const fh = f0j * hc.ratio;
const omega = 2.0 * Math.PI * fh / sampleRate;
const b1 = 2.0 * cfg.r * Math.cos(omega);
const x = A * cfg.gainNorm * noise * hc.ampMult;
const y = b1 * cfg.y1[h] - cfg.r * cfg.r * cfg.y2[h] + x;
cfg.y2[h] = cfg.y1[h];
cfg.y1[h] = y;
sample += y * cfg.gainComp;
}
} else {
if (t < fc.t0 || t > fc.t3) continue;
const f0 = evalBezier(fc, t);
const A0 = evalBezierAmp(fc, t);
for (let h = 0; h < cfg.replicaData.length; ++h) {
const rep = cfg.replicaData[h];
const f = f0 * rep.ratio * (1.0 + rep.spread);
const A = A0 * rep.ampMult;
let phase;
if (integratePhase) {
// Per-sample frequency jitter: ±jitter fraction of instantaneous freq
rep.jitterSeed = (Math.imul(1664525, rep.jitterSeed) + 1013904223) >>> 0;
const jNoise = rep.jitterSeed / 0x100000000 * 2.0 - 1.0;
rep.phase += 2.0 * Math.PI * f / sampleRate * (1.0 + jNoise * cfg.jitter);
phase = rep.phase;
} else {
phase = 2.0 * Math.PI * f * t + rep.phase;
}
sample += A * Math.sin(phase);
}
}
}
pcm[i] = sample;
}
// Post-synthesis filters (applied before normalization)
// LP: y[n] = k1*x[n] + (1-k1)*y[n-1] — options.k1 in (0,1], omit to bypass
// HP: y[n] = k2*(y[n-1] + x[n] - x[n-1]) — options.k2 in (0,1], omit to bypass
if (options.k1 != null) {
const k1 = clamp(options.k1, 0, 1);
let y = 0.0;
for (let i = 0; i < numSamples; ++i) {
y = k1 * pcm[i] + (1.0 - k1) * y;
pcm[i] = y;
}
}
if (options.k2 != null) {
const k2 = clamp(options.k2, 0, 1);
let y = 0.0, xp = 0.0;
for (let i = 0; i < numSamples; ++i) {
const x = pcm[i];
y = k2 * (y + x - xp);
xp = x;
pcm[i] = y;
}
}
// Normalize
let maxAbs = 0;
for (let i = 0; i < numSamples; ++i) maxAbs = Math.max(maxAbs, Math.abs(pcm[i]));
if (maxAbs > 1.0) {
for (let i = 0; i < numSamples; ++i) pcm[i] /= maxAbs;
}
return pcm;
}
|