1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
|
// This is the core JavaScript for the Spectrogram Editor.
// It handles file loading (.spec), visualization, tool interaction, and saving.
// --- Global Variables ---
let currentSpecData = null; // Stores the currently displayed/edited spectrogram data
let originalSpecData = null; // Stores the pristine, initially loaded spectrogram data
let dctSize = 512; // Default DCT size, read from header
let undoStack = [];
let redoStack = [];
const MAX_HISTORY_SIZE = 50;
let activeTool = null; // 'line', 'ellipse', 'noise', etc.
let isDrawing = false;
let startX, startY; // For tracking mouse down position
let shapes = []; // Array to store all drawn shapes (lines, ellipses, etc.)
// Web Audio Context
const audioContext = new (window.AudioContext || window.webkitAudioContext)();
// Audio Constants (should match C++ side)
const SAMPLE_RATE = 32000;
const MAX_FREQ = SAMPLE_RATE / 2; // Nyquist frequency
const MIN_FREQ = 20; // Lower bound for log scale visualization
const SDF_FALLOFF_FACTOR = 10.0; // Adjust this value to control the softness of SDF edges.
// --- Utility Functions for Audio Processing ---
// JavaScript equivalent of C++ idct_512
function javascript_idct_512(input) {
const output = new Float32Array(dctSize);
const PI = Math.PI;
const N = dctSize;
for (let n = 0; n < N; ++n) {
let sum = input[0] / 2.0;
for (let k = 1; k < N; ++k) {
sum += input[k] * Math.cos((PI / N) * k * (n + 0.5));
}
output[n] = sum * (2.0 / N);
}
return output;
}
// Hanning window for smooth audio transitions (JavaScript equivalent)
function hanningWindow(size) {
const window = new Float32Array(size);
const PI = Math.PI;
for (let i = 0; i < size; i++) {
window[i] = 0.5 * (1 - Math.cos((2 * PI * i) / (size - 1)));
}
return window;
}
const hanningWindowArray = hanningWindow(dctSize); // Pre-calculate window
// --- Signed Distance Functions (SDFs) ---
// Generic 2D vector operations
function vec2(x, y) { return { x: x, y: y }; }
function length(v) { return Math.sqrt(v.x * v.x + v.y * v.y); }
function dot(v1, v2) { return v1.x * v2.x + v1.y * v2.y; }
function sub(v1, v2) { return vec2(v1.x - v2.x, v1.y - v2.y); }
function mul(v, s) { return vec2(v.x * s, v.y * s); }
function div(v, s) { return vec2(v.x / s, v.y / s); }
function normalize(v) { return div(v, length(v)); }
function clamp(x, minVal, maxVal) { return Math.max(minVal, Math.min(x, maxVal)); }
function abs(v) { return vec2(Math.abs(v.x), Math.abs(v.y)); }
function max(v1, v2) { return vec2(Math.max(v1.x, v2.x), Math.max(v1.y, v2.y)); }
function sign(x) { return (x > 0) ? 1 : ((x < 0) ? -1 : 0); }
// sdSegment(p, a, b) - signed distance to a line segment
// p: point, a: segment start, b: segment end
function sdSegment(p, a, b) {
const pa = sub(p, a);
const ba = sub(b, a);
const h = clamp(dot(pa, ba) / dot(ba, ba), 0.0, 1.0);
return length(sub(pa, mul(ba, h)));
}
// sdEllipse(p, r) - signed distance to an ellipse (p relative to center, r is half-extents)
// p: point relative to ellipse center, r: half-extents (rx, ry)
function sdEllipse(p, r) {
const k0 = vec2(1, length(div(p, r)));
const k1 = vec2(length(div(p, r)), 1);
const f = ((dot(div(mul(p, p), k0), vec2(1, 1)) < dot(div(mul(p, p), k1), vec2(1, 1))) ? k0 : k1);
return length(sub(p, mul(r, normalize(mul(f, p))))) * sign(length(p) - r.x); // Simplified, original has length(p)-r.x which is only for circular
}
// sdBox(p, r) - signed distance to a rectangle (p relative to center, r is half-extents)
// p: point relative to box center, r: half-extents (hx, hy)
function sdBox(p, r) {
const q = sub(abs(p), r);
return length(max(q, vec2(0, 0))) + Math.min(0.0, Math.max(q.x, q.y));
}
// --- Utility to map canvas coords to spectrogram bins/frames (LOG SCALE) ---
// Maps a linear frequency bin index to its corresponding frequency in Hz
function binIndexToFreq(binIndex) {
return (binIndex / dctSize) * MAX_FREQ;
}
// Maps a frequency in Hz to its corresponding linear bin index
function freqToBinIndex(freq) {
return Math.floor((freq / MAX_FREQ) * dctSize);
}
// Maps a frequency (Hz) to its corresponding log-scaled bin index
function freqToBinIndexLog(freq) {
if (freq < MIN_FREQ) freq = MIN_FREQ; // Clamp minimum frequency
const logMin = Math.log(MIN_FREQ);
const logMax = Math.log(MAX_FREQ);
const logFreq = Math.log(freq);
const normalizedLog = (logFreq - logMin) / (logMax - logMin);
return Math.floor(normalizedLog * dctSize);
}
// Maps a log-scaled bin index to its corresponding frequency in Hz
function binIndexToFreqLog(binIndex) {
const normalizedLog = binIndex / dctSize;
const logMin = Math.log(MIN_FREQ);
const logMax = Math.log(MAX_FREQ);
const logFreq = normalizedLog * (logMax - logMin) + logMin;
return Math.exp(logFreq);
}
// Converts a frequency (Hz) to a Y-coordinate on the canvas (log scale)
function freqToCanvasYLog(freq, canvasHeight) {
if (freq < MIN_FREQ) freq = MIN_FREQ; // Clamp minimum frequency
const logMin = Math.log(MIN_FREQ);
const logMax = Math.log(MAX_FREQ);
const logFreq = Math.log(freq);
const normalizedLog = (logFreq - logMin) / (logMax - logMin);
return canvasHeight * (1 - normalizedLog); // Y-axis is inverted
}
// Converts a Y-coordinate on the canvas to a frequency (Hz) (log scale)
function canvasYToFreqLog(canvasY, canvasHeight) {
const normalizedLog = 1 - (canvasY / canvasHeight);
const logMin = Math.log(MIN_FREQ);
const logMax = Math.log(MAX_FREQ);
const logFreq = normalizedLog * (logMax - logMin) + logMin;
return Math.exp(logFreq);
}
// Converts canvas Y-coordinate to log-scaled bin index
function canvasYToBinIndexLog(canvasY, specData) {
const freq = canvasYToFreqLog(canvasY, canvas.height);
return freqToBinIndex(freq); // Use linear bin index from calculated log freq
}
// Converts log-scaled bin index to canvas Y-coordinate
function binIndexToCanvasYLog(binIndex, specData) {
const freq = binIndexToFreq(binIndex);
return freqToCanvasYLog(freq, canvas.height);
}
// Helper to get frequency delta from canvas delta (for ellipse radius in freq)
function canvasDeltaYToFreqDeltaLog(canvasDeltaY, canvasHeight) {
// This is an approximation as delta in log scale is not linear
// For small deltas around a center, it can be approximated
const centerCanvasY = canvasHeight / 2;
const freqAtCenter = canvasYToFreqLog(centerCanvasY, canvasHeight);
const freqAtCenterPlusDelta = canvasYToFreqLog(centerCanvasY - canvasDeltaY, canvasHeight);
return Math.abs(freqAtCenterPlusDelta - freqAtCenter);
}
// Initial setup for canvas size (can be updated on window resize)
window.addEventListener('resize', () => {
if (originalSpecData) {
canvas.width = window.innerWidth * 0.7;
canvas.height = 400; // Fixed height
redrawCanvas();
}
});
// Initial call to set button states
updateUndoRedoButtons();
// --- Utility for sizeof(float) in JS context ---
// This is a workaround since typeof(float) is not directly available.
// Float32Array.BYTES_PER_ELEMENT is used in handleFileSelect.
function sizeof(type) {
if (type === 'float') {
return Float32Array.BYTES_PER_ELEMENT;
}
return 0;
}
// --- File Handling ---
const specFileInput = document.getElementById('specFileInput');
specFileInput.addEventListener('change', handleFileSelect);
async function handleFileSelect(event) {
const file = event.target.files[0];
if (!file) {
return;
}
try {
const buffer = await file.arrayBuffer();
const dataView = new DataView(buffer);
// Parse SPEC header
const header = {
magic: String.fromCharCode(...new Uint8Array(buffer.slice(0, 4))),
version: dataView.getInt32(4, true),
dct_size: dataView.getInt32(8, true),
num_frames: dataView.getInt32(12, true)
};
if (header.magic !== "SPEC" || header.version !== 1) {
console.error("Invalid SPEC file format.");
alert("Invalid SPEC file format. Please load a valid .spec file.");
return;
}
dctSize = header.dct_size;
const dataStart = 16;
const numBytes = header.num_frames * header.dct_size * Float32Array.BYTES_PER_ELEMENT;
const spectralDataFloat = new Float32Array(buffer, dataStart, header.num_frames * header.dct_size);
originalSpecData = { header: header, data: new Float32Array(spectralDataFloat) }; // Store pristine copy
currentSpecData = { header: header, data: new Float32Array(spectralDataFloat) }; // Editable copy
shapes = []; // Clear shapes on new file load
undoStack = []; // Clear undo history
redoStack = []; // Clear redo history
console.log("Loaded SPEC file:", header);
redrawCanvas(); // Redraw with new data
} catch (error) {
console.error("Error loading SPEC file:", error);
alert("Failed to load SPEC file. Check console for details.");
}
}
// --- Spectrogram Visualization ---
const canvas = document.getElementById('spectrogramCanvas');
const ctx = canvas.getContext('2d');
// Add canvas event listeners
canvas.addEventListener('mousedown', handleMouseDown);
canvas.addEventListener('mousemove', handleMouseMove);
canvas.addEventListener('mouseup', handleMouseUp);
canvas.addEventListener('mouseout', handleMouseUp); // Treat mouse out as mouse up
// Function to get a color based on intensity (0 to 1)
function getColorForIntensity(intensity) {
// Example: Blue to white/yellow gradient
const h = (1 - intensity) * 240; // Hue from blue (240) to red (0), inverse for intensity
const s = 100; // Saturation
const l = intensity * 50 + 50; // Lightness from 50 to 100
return `hsl(${h}, ${s}%, ${l}%)`;
}
function drawSpectrogram(specData) {
const width = canvas.width;
const height = canvas.height;
ctx.clearRect(0, 0, width, height);
ctx.fillStyle = '#ffffff';
ctx.fillRect(0, 0, width, height);
if (!specData || !specData.data || specData.header.num_frames === 0 || specData.data.length === 0) {
console.warn("No spectrogram data or invalid header/data to draw.");
return;
}
const numFrames = specData.header.num_frames;
const frameWidth = width / numFrames; // Width of each time frame
// Draw each frame's spectral data with log frequency scale
for (let frameIndex = 0; frameIndex < numFrames; frameIndex++) {
const frameDataStart = frameIndex * dctSize;
const xPos = frameIndex * frameWidth;
// To draw with log scale, we iterate over canvas y-coordinates
// and map them back to frequency bins
for (let y = 0; y < height; y++) {
const binIndex = canvasYToBinIndexLog(y, specData);
if (binIndex < 0 || binIndex >= dctSize) continue; // Out of bounds
const value = specData.data[frameDataStart + binIndex];
const intensity = Math.min(1, Math.abs(value) / 1.0); // Assuming values are normalized to [-1, 1]
ctx.fillStyle = getColorForIntensity(intensity);
ctx.fillRect(xPos, height - y - 1, frameWidth, 1); // Draw a 1-pixel height line for each y
}
}
// Draw active shapes on top (previews for current drawing tool)
shapes.forEach(shape => {
drawShape(shape);
});
}
function drawShape(shape) {
// This draws the final, persistent shape. Preview is drawn in handleMouseMove.
ctx.strokeStyle = shape.color || 'red';
ctx.lineWidth = shape.width || 2;
switch (shape.type) {
case 'line':
ctx.beginPath();
ctx.moveTo(shape.x1, shape.y1);
ctx.lineTo(shape.x2, shape.y2);
ctx.stroke();
break;
case 'ellipse':
ctx.beginPath();
ctx.ellipse(shape.cx, shape.cy, shape.rx, shape.ry, 0, 0, 2 * Math.PI);
ctx.stroke();
break;
case 'noise_rect': // Noise is visualized as a rectangle
ctx.fillStyle = 'rgba(0, 0, 255, 0.2)';
ctx.fillRect(shape.x, shape.y, shape.width, shape.height);
ctx.strokeStyle = 'blue';
ctx.strokeRect(shape.x, shape.y, shape.width, shape.height);
break;
}
}
// --- Mouse Event Handlers ---
function getMousePos(event) {
const rect = canvas.getBoundingClientRect();
return {
x: event.clientX - rect.left,
y: event.clientY - rect.top
};
}
function handleMouseDown(event) {
if (!activeTool || !currentSpecData) return;
isDrawing = true;
const pos = getMousePos(event);
startX = pos.x;
startY = pos.y;
}
function handleMouseMove(event) {
if (!isDrawing || !activeTool) return;
const pos = getMousePos(event);
redrawCanvas(); // Clear and redraw persistent state
ctx.strokeStyle = 'rgba(0, 0, 0, 0.5)'; // Preview color
ctx.lineWidth = 1;
ctx.setLineDash([5, 5]); // Dashed line for preview
switch (activeTool) {
case 'line':
ctx.beginPath();
ctx.moveTo(startX, startY);
ctx.lineTo(pos.x, pos.y);
ctx.stroke();
break;
case 'ellipse':
// Draw preview ellipse based on start and current pos (bounding box)
const rx = Math.abs(pos.x - startX) / 2;
const ry = Math.abs(pos.y - startY) / 2;
const cx = startX + (pos.x - startX) / 2;
const cy = startY + (pos.y - startY) / 2;
if (rx > 0 && ry > 0) {
ctx.beginPath();
ctx.ellipse(cx, cy, rx, ry, 0, 0, 2 * Math.PI);
ctx.stroke();
}
break;
case 'noise':
// Draw preview rectangle for noise area
const rectX = Math.min(startX, pos.x);
const rectY = Math.min(startY, pos.y);
const rectW = Math.abs(pos.x - startX);
const rectH = Math.abs(pos.y - startY);
ctx.strokeRect(rectX, rectY, rectW, rectH);
break;
}
ctx.setLineDash([]); // Reset line dash
}
function handleMouseUp(event) {
if (!isDrawing || !activeTool || !currentSpecData) return;
isDrawing = false;
const endPos = getMousePos(event);
let newShape = null;
switch (activeTool) {
case 'line': {
const startCoords = canvasToSpectrogramCoords(startX, startY, currentSpecData);
const endCoords = canvasToSpectrogramCoords(endPos.x, endPos.y, currentSpecData);
newShape = {
type: 'line',
// Canvas coordinates for drawing visual representation (unchanged)
x1: startX, y1: startY,
x2: endPos.x, y2: endPos.y,
// World coordinates for SDF calculations (frame and log-scaled frequency)
frame1_world: startCoords.frame,
freq1_world: binIndexToFreqLog(startCoords.bin),
frame2_world: endCoords.frame,
freq2_world: binIndexToFreqLog(endCoords.bin),
amplitude: 0.5, // Default amplitude
width: 2, // Visual width in canvas pixels, not directly used by SDF, but kept for drawing
color: 'red',
falloff: SDF_FALLOFF_FACTOR, // SDF falloff factor
};
break;
}
case 'ellipse': {
const rx = Math.abs(endPos.x - startX) / 2;
const ry = Math.abs(endPos.y - startY) / 2;
const cx = startX + (endPos.x - startX) / 2;
const cy = startY + (endPos.y - startY) / 2;
const centerCoords = canvasToSpectrogramCoords(cx, cy, currentSpecData);
const halfWidthFrames = Math.floor((rx / canvas.width) * currentSpecData.header.num_frames);
const startFreq = canvasYToFreqLog(startY, canvas.height);
const endFreq = canvasYToFreqLog(endPos.y, canvas.height);
const centerFreq = (startFreq + endFreq) / 2;
const halfHeightFreq = Math.abs(startFreq - endFreq) / 2;
newShape = {
type: 'ellipse',
// Canvas coordinates for drawing visual representation (unchanged)
cx: cx, cy: cy,
rx: rx, ry: ry,
// World coordinates for SDF calculations
center_frame_world: centerCoords.frame,
center_freq_world: centerFreq,
radius_frames_world: halfWidthFrames,
radius_freq_world: halfHeightFreq,
amplitude: 0.5,
color: 'green',
falloff: SDF_FALLOFF_FACTOR,
};
break;
}
case 'noise': {
const rectX = Math.min(startX, endPos.x);
const rectY = Math.min(startY, endPos.y);
const rectW = Math.abs(endPos.x - startX);
const rectH = Math.abs(endPos.y - startY);
const startCoords = canvasToSpectrogramCoords(rectX, rectY, currentSpecData);
const endCoords = canvasToSpectrogramCoords(rectX + rectW, rectY + rectH, currentSpecData);
const centerFrame = Math.floor((startCoords.frame + endCoords.frame) / 2);
const centerFreq = (binIndexToFreqLog(startCoords.bin) + binIndexToFreqLog(endCoords.bin)) / 2;
const halfExtentFrames = Math.floor(Math.abs(endCoords.frame - startCoords.frame) / 2);
const halfExtentFreq = Math.abs(binIndexToFreqLog(endCoords.bin) - binIndexToFreqLog(startCoords.bin)) / 2;
newShape = {
type: 'noise_rect',
// Canvas coordinates for drawing visual representation (unchanged)
x: rectX, y: rectY,
width: rectW, height: rectH,
// World coordinates for SDF calculations
center_frame_world: centerFrame,
center_freq_world: centerFreq,
half_extent_frames_world: halfExtentFrames,
half_extent_freq_world: halfExtentFreq,
amplitude: 0.3, // Default noise amplitude
density: 0.5, // Default noise density
color: 'blue',
falloff: 0.0, // No falloff for pure noise inside rect
};
break;
}
}
if (newShape) {
// Capture the state *before* applying the new shape for undo
const previousDataSnapshot = new Float32Array(currentSpecData.data); // Copy of actual data
const previousShapesSnapshot = shapes.map(s => ({ ...s })); // Deep copy shapes array
applyShapeToSpectrogram(newShape, currentSpecData); // Modify currentSpecData directly
shapes.push(newShape);
addAction({
type: 'add_shape',
shape: newShape,
undo: () => {
// To undo, restore previous shapes and previous data
shapes = previousShapesSnapshot;
currentSpecData.data = previousDataSnapshot;
},
redo: () => {
// To redo, add the shape back and apply it to current data
shapes.push(newShape);
applyShapeToSpectrogram(newShape, currentSpecData);
}
});
}
redrawCanvas(); // Final redraw after action
updateUndoRedoButtons();
}
// --- Spectrogram Data Manipulation ---
function applyShapeToSpectrogram(shape, targetSpecData) {
if (!targetSpecData || !targetSpecData.data || targetSpecData.header.num_frames === 0) return;
const numFrames = targetSpecData.header.num_frames;
// Determine a bounding box for optimization (iterate only relevant cells)
let minFrame = 0, maxFrame = numFrames - 1;
let minBin = 0, maxBin = dctSize - 1;
// Calculate tighter bounding boxes for each shape type
switch (shape.type) {
case 'line':
minFrame = Math.min(shape.frame1_world, shape.frame2_world) - Math.ceil(shape.width / 2);
maxFrame = Math.max(shape.frame1_world, shape.frame2_world) + Math.ceil(shape.width / 2);
// For frequency, approximate by visual width or a fixed range if needed
minBin = freqToBinIndex(Math.min(shape.freq1_world, shape.freq2_world)) - Math.ceil(shape.width / 2);
maxBin = freqToBinIndex(Math.max(shape.freq1_world, shape.freq2_world)) + Math.ceil(shape.width / 2);
break;
case 'ellipse':
minFrame = shape.center_frame_world - shape.radius_frames_world - 1;
maxFrame = shape.center_frame_world + shape.radius_frames_world + 1;
minBin = freqToBinIndex(shape.center_freq_world - shape.radius_freq_world) - 1; // Approx bin range from world freq
maxBin = freqToBinIndex(shape.center_freq_world + shape.radius_freq_world) + 1; // Approx bin range from world freq
break;
case 'noise_rect':
minFrame = shape.center_frame_world - shape.half_extent_frames_world - 1;
maxFrame = shape.center_frame_world + shape.half_extent_frames_world + 1;
minBin = freqToBinIndex(shape.center_freq_world - shape.half_extent_freq_world) - 1; // Approx bin range from world freq
maxBin = freqToBinIndex(shape.center_freq_world + shape.half_extent_freq_world) + 1; // Approx bin range from world freq
break;
}
minFrame = Math.max(0, minFrame);
maxFrame = Math.min(targetSpecData.header.num_frames - 1, maxFrame); // Use targetSpecData.header.num_frames
minBin = Math.max(0, minBin);
maxBin = Math.min(dctSize - 1, maxBin);
for (let f = minFrame; f <= maxFrame; f++) {
for (let b = minBin; b <= maxBin; b++) {
const p_world = vec2(f, binIndexToFreqLog(b));
let distance = Infinity;
switch (shape.type) {
case 'line':
const a_line = vec2(shape.frame1_world, shape.freq1_world);
const b_line = vec2(shape.frame2_world, shape.freq2_world);
distance = sdSegment(p_world, a_line, b_line);
break;
case 'ellipse':
const center_ellipse = vec2(shape.center_frame_world, shape.center_freq_world);
const r_ellipse = vec2(shape.radius_frames_world, shape.radius_freq_world);
distance = sdEllipse(sub(p_world, center_ellipse), r_ellipse);
break;
case 'noise_rect':
const center_box = vec2(shape.center_frame_world, shape.center_freq_world);
const r_box = vec2(shape.half_extent_frames_world, shape.half_extent_freq_world);
distance = sdBox(sub(p_world, center_box), r_box);
if (distance <= 0 && Math.random() < shape.density) { // Only add noise inside the box with density
targetSpecData.data[f * dctSize + b] += (Math.random() * 2 - 1) * shape.amplitude;
}
break;
}
if (shape.type !== 'noise_rect') { // Noise is handled differently for amplitude
const attenuation = Math.exp(-distance * distance * shape.falloff);
targetSpecData.data[f * dctSize + b] += shape.amplitude * attenuation;
}
// Clamp final value
targetSpecData.data[f * dctSize + b] = Math.max(-1, Math.min(1, targetSpecData.data[f * dctSize + b]));
}
}
}
// --- Tool Interactions (Button Clicks) ---
const lineToolButton = document.getElementById('lineTool');
const ellipseToolButton = document.getElementById('ellipseTool');
const noiseToolButton = document.getElementById('noiseTool');
const undoButton = document.getElementById('undoButton');
const redoButton = document.getElementById('redoButton');
const listenOriginalButton = document.getElementById('listenOriginalButton');
const listenGeneratedButton = document.getElementById('listenGeneratedButton');
lineToolButton.addEventListener('click', () => { activeTool = 'line'; console.log('Line tool selected'); });
ellipseToolButton.addEventListener('click', () => { activeTool = 'ellipse'; console.log('Ellipse tool selected'); });
noiseToolButton.addEventListener('click', () => { activeTool = 'noise'; console.log('Noise tool selected'); });
// --- Undo/Redo Logic ---
function addAction(action) {
undoStack.push(action);
if (undoStack.length > MAX_HISTORY_SIZE) {
undoStack.shift();
}
redoStack = [];
updateUndoRedoButtons();
}
function handleUndo() {
if (undoStack.length === 0) {
console.log('Undo stack is empty.');
return;
}
const actionToUndo = undoStack.pop();
actionToUndo.undo();
redoStack.push(actionToUndo);
redrawCanvas();
updateUndoRedoButtons();
}
function handleRedo() {
if (redoStack.length === 0) {
console.log('Redo stack is empty.');
return;
}
const actionToRedo = redoStack.pop();
actionToRedo.redo();
undoStack.push(actionToRedo);
redrawCanvas();
updateUndoRedoButtons();
}
function redrawCanvas() {
console.log('Redrawing canvas...');
if (!originalSpecData) {
ctx.clearRect(0, 0, canvas.width, canvas.height);
ctx.fillStyle = '#ffffff';
ctx.fillRect(0, 0, canvas.width, canvas.height);
return;
}
// Start with a fresh copy of the original data
currentSpecData.data = new Float32Array(originalSpecData.data);
// Replay all shapes from the `shapes` array to `currentSpecData`
shapes.forEach(shape => {
applyShapeToSpectrogram(shape, currentSpecData);
});
drawSpectrogram(currentSpecData);
}
function updateUndoRedoButtons() {
undoButton.disabled = undoStack.length === 0;
redoButton.disabled = redoStack.length === 0;
}
|