1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
|
// This file is part of the 64k demo project.
// It tests the mathematical utility functions.
// Verifies vector operations, matrix transformations, and interpolation.
#include "util/mini_math.h"
#include <cassert>
#include <cmath>
#include <iostream>
#include <vector>
// Checks if two floats are approximately equal
bool near(float a, float b, float e = 0.001f) {
return std::abs(a - b) < e;
}
// Generic test runner for any vector type (vec2, vec3, vec4)
template <typename T> void test_vector_ops(int n) {
T a, b;
// Set values
for (int i = 0; i < n; ++i) {
a[i] = (float)(i + 1);
b[i] = 10.0f;
}
// Add
T c = a + b;
for (int i = 0; i < n; ++i)
assert(near(c[i], (float)(i + 1) + 10.0f));
// Scale
T s = a * 2.0f;
for (int i = 0; i < n; ++i)
assert(near(s[i], (float)(i + 1) * 2.0f));
// Dot Product
// vec3(1,2,3) . vec3(1,2,3) = 1+4+9 = 14
float expected_dot = 0;
for (int i = 0; i < n; ++i)
expected_dot += a[i] * a[i];
assert(near(T::dot(a, a), expected_dot));
// Norm (Length)
assert(near(a.norm(), std::sqrt(expected_dot)));
// Normalize
T n_vec = a.normalize();
assert(near(n_vec.norm(), 1.0f));
// Lerp
T l = lerp(a, b, 0.3f);
for (int i = 0; i < n; ++i)
assert(near(l[i], .7 * (i + 1) + .3 * 10.0f));
}
// Specific test for padding alignment in vec3
void test_vec3_special() {
std::cout << "Testing vec3 alignment..." << std::endl;
// Verify sizeof is 16 bytes (4 floats) due to padding for WebGPU
assert(sizeof(vec3) == 16);
vec3 v(1, 0, 0);
vec3 v2(0, 1, 0);
// Cross Product
vec3 c = vec3::cross(v, v2);
assert(near(c.x, 0) && near(c.y, 0) && near(c.z, 1));
}
// Tests quaternion rotation, look_at, and slerp
void test_quat() {
std::cout << "Testing Quat..." << std::endl;
// Rotation (Rodrigues)
vec3 v(1, 0, 0);
quat q = quat::from_axis({0, 1, 0}, 1.5708f); // 90 deg Y
vec3 r = q.rotate(v);
assert(near(r.x, 0) && near(r.z, -1));
// Look At
// Looking from origin to +X, with +Y as up.
// The local forward vector (0,0,-1) should be transformed to (1,0,0)
quat l = quat::look_at({0, 0, 0}, {10, 0, 0}, {0, 1, 0});
vec3 f = l.rotate({0, 0, -1});
assert(near(f.x, 1.0f) && near(f.y, 0.0f) && near(f.z, 0.0f));
// Slerp Midpoint
quat q1(0, 0, 0, 1);
quat q2 = quat::from_axis({0, 1, 0}, 1.5708f); // 90 deg
quat mid = slerp(q1, q2, 0.5f); // 45 deg
assert(near(mid.y, 0.3826f)); // sin(pi/8)
}
// Tests WebGPU specific matrices
void test_matrices() {
std::cout << "Testing Matrices..." << std::endl;
float n = 0.1f, f = 100.0f;
mat4 p = mat4::perspective(0.785f, 1.0f, n, f);
// Check WebGPU Z-range [0, 1]
// Z_ndc = (m10 * Z_view + m14) / -Z_view
float z_near = (p.m[10] * -n + p.m[14]) / n;
float z_far = (p.m[10] * -f + p.m[14]) / f;
assert(near(z_near, 0.0f));
assert(near(z_far, 1.0f));
// Test mat4::look_at
vec3 eye(0, 0, 5);
vec3 target(0, 0, 0);
vec3 up(0, 1, 0);
mat4 view = mat4::look_at(eye, target, up);
// Point (0,0,0) in world should be at (0,0,-5) in view space
assert(near(view.m[14], -5.0f));
// Test matrix multiplication
mat4 t = mat4::translate({1, 2, 3});
mat4 s = mat4::scale({2, 2, 2});
mat4 ts = t * s; // Scale then Translate (if applied to vector on right: M*v)
// v = (1,1,1,1) -> scale(2,2,2) -> (2,2,2,1) -> translate(1,2,3) -> (3,4,5,1)
vec4 v(1, 1, 1, 1);
vec4 res = ts * v;
assert(near(res.x, 3.0f));
assert(near(res.y, 4.0f));
assert(near(res.z, 5.0f));
// Test Rotation
// Rotate 90 deg around Z. (1,0,0) -> (0,1,0)
mat4 r = mat4::rotate({0, 0, 1}, 1.570796f);
vec4 v_rot = r * vec4(1, 0, 0, 1);
assert(near(v_rot.x, 0.0f));
assert(near(v_rot.y, 1.0f));
}
// Tests easing curves
void test_ease() {
std::cout << "Testing Easing..." << std::endl;
// Boundary tests
assert(near(ease::out_cubic(0.0f), 0.0f));
assert(near(ease::out_cubic(1.0f), 1.0f));
assert(near(ease::in_out_quad(0.0f), 0.0f));
assert(near(ease::in_out_quad(1.0f), 1.0f));
// Midpoint/Logic tests
assert(ease::out_cubic(0.5f) >
0.5f); // Out curves should exceed linear value early
assert(
near(ease::in_out_quad(0.5f), 0.5f)); // Symmetric curves hit 0.5 at 0.5
}
// Tests spring solver
void test_spring() {
std::cout << "Testing Spring..." << std::endl;
float p = 0, v = 0;
// Simulate approx 1 sec with 0.5s smooth time
for (int i = 0; i < 60; ++i)
spring::solve(p, v, 10.0f, 0.5f, 0.016f);
assert(p > 8.5f);
// Test vector spring
vec3 vp(0, 0, 0), vv(0, 0, 0), vt(10, 0, 0);
spring::solve(vp, vv, vt, 0.5f, 0.016f * 60.0f); // 1 huge step approx
assert(vp.x > 1.0f); // Should have moved significantly
}
// Verifies that a matrix is approximately the identity matrix
void check_identity(const mat4& m) {
for (int i = 0; i < 16; ++i) {
float expected = (i % 5 == 0) ? 1.0f : 0.0f;
if (!near(m.m[i], expected, 0.005f)) {
std::cerr << "Matrix not Identity at index " << i << ": got " << m.m[i]
<< " expected " << expected << std::endl;
assert(false);
}
}
}
// Tests matrix inversion and transposition correctness
void test_matrix_inversion() {
std::cout << "Testing Matrix Inversion..." << std::endl;
// 1. Identity
mat4 id;
check_identity(id.inverse());
// 2. Translation
mat4 t = mat4::translate({10.0f, -5.0f, 2.0f});
mat4 t_inv = t.inverse();
check_identity(t * t_inv);
check_identity(t_inv * t);
// 3. Scale (non-uniform)
mat4 s = mat4::scale({2.0f, 0.5f, 4.0f});
mat4 s_inv = s.inverse();
check_identity(s * s_inv);
// 4. Rotation
mat4 r = mat4::rotate({1.0f, 2.0f, 3.0f}, 0.785f); // 45 deg around complex axis
mat4 r_inv = r.inverse();
check_identity(r * r_inv);
// 5. Complex Transform (TRS)
mat4 trs = t * (r * s);
mat4 trs_inv = trs.inverse();
check_identity(trs * trs_inv);
check_identity(trs_inv * trs);
// 6. Transposition
std::cout << "Testing Matrix Transposition..." << std::endl;
mat4 trs_t = mat4::transpose(trs);
mat4 trs_tt = mat4::transpose(trs_t);
for (int i = 0; i < 16; ++i) {
assert(near(trs.m[i], trs_tt.m[i]));
}
// 7. Manual "stress" matrix (some small values, some large)
mat4 stress;
stress.m[0] = 1.0f;
stress.m[5] = 2.0f;
stress.m[10] = 3.0f;
stress.m[15] = 4.0f;
stress.m[12] = 100.0f;
stress.m[1] = 0.5f;
mat4 stress_inv = stress.inverse();
check_identity(stress * stress_inv);
}
int main() {
std::cout << "Testing vec2..." << std::endl;
test_vector_ops<vec2>(2);
std::cout << "Testing vec3..." << std::endl;
test_vector_ops<vec3>(3);
test_vec3_special();
std::cout << "Testing vec4..." << std::endl;
test_vector_ops<vec4>(4);
test_quat();
test_matrices();
test_matrix_inversion(); // New tests
test_ease();
test_spring();
std::cout << "--- ALL TESTS PASSED ---" << std::endl;
return 0;
}
|