1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
|
// This file is part of the 64k demo project.
// It implements basic procedural texture generators.
#include "procedural/generator.h"
#include <cmath>
#include <cstdlib>
namespace procedural {
// Smoothstep
constexpr float smooth(float x) {
return x * x * (3.f - 2.f * x);
}
constexpr float mix(float a, float b, float t) {
return (a * (1.0f - t) + b * t);
}
// Fractional part
static inline float fract(float x) {
return x - floorf(x);
}
// Hash function: vec2 -> float (deterministic, no rand())
// Matches WGSL hash_2f() behavior
static float hash_2f(float x, float y) {
const float h = x * 127.1f + y * 311.7f;
return fract(sinf(h) * 43758.5453123f);
}
// Value noise: 2D (matches WGSL noise_2d)
static float noise_2d(float x, float y) {
const float ix = floorf(x);
const float iy = floorf(y);
const float fx = fract(x);
const float fy = fract(y);
const float u = smooth(fx);
const float v = smooth(fy);
const float n00 = hash_2f(ix + 0.0f, iy + 0.0f);
const float n10 = hash_2f(ix + 1.0f, iy + 0.0f);
const float n01 = hash_2f(ix + 0.0f, iy + 1.0f);
const float n11 = hash_2f(ix + 1.0f, iy + 1.0f);
const float ix0 = mix(n00, n10, u);
const float ix1 = mix(n01, n11, u);
return mix(ix0, ix1, v);
}
// Perlin noise generator (Fractional Brownian Motion using value noise)
// Params[0]: Seed (offset for hash function)
// Params[1]: Frequency (Scale)
// Params[2]: Amplitude
// Params[3]: Amplitude decay
// Params[4]: Number of octaves
bool gen_perlin(uint8_t* buffer, int w, int h, const float* params,
int num_params) {
const float seed = (num_params > 0) ? params[0] : 0.0f;
const float base_freq = (num_params > 1) ? params[1] : 4.0f;
const float base_amp = (num_params > 2) ? params[2] : 1.0f;
const float amp_decay = (num_params > 3) ? params[3] : 0.5f;
const int octaves = (num_params > 4) ? (int)params[4] : 4;
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
float value = 0.0f;
float amplitude = base_amp;
float frequency = base_freq;
float total_amp = 0.0f;
for (int o = 0; o < octaves; ++o) {
const float nx = (float)x / (float)w * frequency + seed;
const float ny = (float)y / (float)h * frequency + seed;
value += noise_2d(nx, ny) * amplitude;
total_amp += amplitude;
frequency *= 2.0f;
amplitude *= amp_decay;
}
value /= total_amp;
const uint8_t uval = (uint8_t)(fminf(fmaxf(value, 0.0f), 1.0f) * 255.0f);
const int idx = (y * w + x) * 4;
buffer[idx + 0] = uval;
buffer[idx + 1] = uval;
buffer[idx + 2] = uval;
buffer[idx + 3] = 255;
}
}
return true;
}
// Simple smooth noise generator (Value Noise)
// Params[0]: Seed (offset for hash function)
// Params[1]: Frequency (Scale)
bool gen_noise(uint8_t* buffer, int w, int h, const float* params,
int num_params) {
if (num_params > 0 && params[0] == -1337.0f)
return false;
const float seed = (num_params > 0) ? params[0] : 0.0f;
const float freq = (num_params > 1) ? params[1] : 4.0f;
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
const float nx = (float)x / (float)w * freq + seed;
const float ny = (float)y / (float)h * freq + seed;
const float noise = noise_2d(nx, ny);
const uint8_t val = (uint8_t)(noise * 255.0f);
const int idx = (y * w + x) * 4;
buffer[idx + 0] = val;
buffer[idx + 1] = val;
buffer[idx + 2] = val;
buffer[idx + 3] = 255;
}
}
return true;
}
// Simple grid generator
// Params[0]: Grid Size (pixels)
// Params[1]: Line Thickness (pixels)
bool gen_grid(uint8_t* buffer, int w, int h, const float* params,
int num_params) {
int grid_size = (num_params > 0) ? (int)params[0] : 32;
int thickness = (num_params > 1) ? (int)params[1] : 2;
if (grid_size < 1)
grid_size = 32;
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
bool on_line =
((x % grid_size) < thickness) || ((y % grid_size) < thickness);
int idx = (y * w + x) * 4;
uint8_t val = on_line ? 255 : 0;
buffer[idx + 0] = val;
buffer[idx + 1] = val;
buffer[idx + 2] = val;
buffer[idx + 3] = 255;
}
}
return true;
}
bool make_periodic(uint8_t* buffer, int w, int h, const float* params,
int num_params) {
float ratio = (num_params > 0) ? params[0] : 0.1f;
if (ratio <= 0.0f)
return true;
if (ratio > 0.5f)
ratio = 0.5f;
const int bx = (int)(w * ratio);
const int by = (int)(h * ratio);
const float scale_x = 1. / bx;
const float scale_y = 1. / by;
// X pass: blend right edge into left edge
for (int y = 0; y < h; ++y) {
for (int x = 0; x < bx; ++x) {
const float t = smooth(scale_x * x);
const int idx_dst = (y * w + x) * 4;
const int idx_src = (y * w + (w - bx + x)) * 4;
for (int c = 0; c < 3; ++c) {
const float v_dst = buffer[idx_dst + c];
const float v_src = buffer[idx_src + c];
buffer[idx_dst + c] = (uint8_t)mix(v_src, v_dst, t);
}
}
}
// Y pass
for (int x = 0; x < w; ++x) {
for (int y = 0; y < by; ++y) {
const float t = smooth(scale_y * y);
const int idx_dst = (y * w + x) * 4;
const int idx_src = ((h - by + y) * w + x) * 4;
for (int c = 0; c < 3; ++c) {
float v_dst = buffer[idx_dst + c];
float v_src = buffer[idx_src + c];
buffer[idx_dst + c] = (uint8_t)mix(v_src, v_dst, t);
}
}
}
return true;
}
} // namespace procedural
|