summaryrefslogtreecommitdiff
path: root/src/procedural/generator.cc
blob: 9f1d18e10bc03b6a722159c549d9bc51b1e57445 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
// This file is part of the 64k demo project.
// It implements basic procedural texture generators.

#include "procedural/generator.h"
#include <cmath>
#include <cstdlib>

namespace procedural {

// Smoothstep
constexpr float smooth(float x) {
  return x * x * (3.f - 2.f * x);
}
constexpr float mix(float a, float b, float t) {
  return (a * (1.0f - t) + b * t);
}

// Perlin noise generator (Fractional Brownian Motion using value noise)
// Params[0]: Seed
// Params[1]: Frequency (Scale)
// Params[2]: Amplitude
// Params[3]: Amplitude decay
// Params[4]: Number of octaves
bool gen_perlin(uint8_t* buffer, int w, int h, const float* params,
                int num_params) {
  float base_freq = (num_params > 1) ? params[1] : 4.0f;
  float base_amp = (num_params > 2) ? params[2] : 1.0f;
  float amp_decay = (num_params > 3) ? params[3] : 0.5f;
  int octaves = (num_params > 4) ? (int)params[4] : 4;
  if (num_params > 0 && params[0] != 0) {
    srand((unsigned int)params[0]);
  }

  // Pre-allocate temporary float buffer for accumulating noise
  float* accum = (float*)calloc((size_t)w * h, sizeof(float));
  if (!accum)
    return false;

  float current_freq = base_freq;
  float current_amp = base_amp;
  float total_amp = 0.0f;

  for (int o = 0; o < octaves; ++o) {
    const int lattice_w = (int)ceil(current_freq) + 1;
    const int lattice_h = (int)ceil(current_freq) + 1;
    float* lattice =
        (float*)malloc((size_t)lattice_w * lattice_h * sizeof(float));
    if (!lattice) {
      free(accum);
      return false;
    }

    for (int i = 0; i < lattice_w * lattice_h; ++i) {
      lattice[i] = (float)rand() / RAND_MAX;
    }

    const float scale_u = current_freq / w;
    const float scale_v = current_freq / h;

    for (int y = 0; y < h; ++y) {
      const float v = scale_v * y;
      const int ly = (int)floor(v);
      const int ly_next = (ly + 1); // No wrap here for better octaves
      float fv = smooth(v - ly);
      for (int x = 0; x < w; ++x) {
        float u = scale_u * x;
        const int lx = (int)floor(u);
        const int lx_next = (lx + 1);
        float fu = smooth(u - lx);

        // Simple tiling for lattice access
        auto get_lat = [&](int ix, int iy) {
          return lattice[(iy % lattice_h) * lattice_w + (ix % lattice_w)];
        };

        float n00 = get_lat(lx, ly);
        float n10 = get_lat(lx_next, ly);
        float n01 = get_lat(lx, ly_next);
        float n11 = get_lat(lx_next, ly_next);

        const float noise = mix(mix(n00, n10, fu), mix(n01, n11, fu), fv);
        accum[y * w + x] += noise * current_amp;
      }
    }

    total_amp += current_amp;
    current_freq *= 2.0f;
    current_amp *= amp_decay;
    free(lattice);
  }

  // Normalize and write to RGBA buffer
  for (int i = 0; i < w * h; ++i) {
    float val = accum[i] / total_amp;
    uint8_t uval = (uint8_t)(fminf(fmaxf(val, 0.0f), 1.0f) * 255.0f);
    buffer[4 * i + 0] = uval;
    buffer[4 * i + 1] = uval;
    buffer[4 * i + 2] = uval;
    buffer[4 * i + 3] = 255;
  }

  free(accum);
  return true;
}

// Simple smooth noise generator (Value Noise-ish)

// Params[0]: Seed

// Params[1]: Frequency (Scale)

bool gen_noise(uint8_t* buffer, int w, int h, const float* params,

               int num_params) {
  if (num_params > 0 && params[0] == -1337.0f) return false;

  float freq = (num_params > 1) ? params[1] : 4.0f;

  if (num_params > 0 && params[0] != 0) {
    srand((unsigned int)params[0]);
  }

  // Create a small lattice of random values

  const int lattice_w = (int)ceil(freq);

  const int lattice_h = (int)ceil(freq);

  float* lattice =
      (float*)malloc((size_t)lattice_w * lattice_h * sizeof(float));

  if (!lattice)
    return false;

  for (int i = 0; i < lattice_w * lattice_h; ++i) {
    lattice[i] = (float)rand() / RAND_MAX;
  }

  const float scale_u = 1.f * (lattice_w - 1) / w;

  const float scale_v = 1.f * (lattice_h - 1) / h;

  for (int y = 0; y < h; ++y) {
    const float v = scale_v * y;

    const int ly = (int)floor(v);

    const int ly_next = (ly + 1) % lattice_h; // Wrap

    const float* const n0 = &lattice[ly * lattice_w];

    const float* const n1 = &lattice[ly_next * lattice_w];

    float fv = smooth(v - ly);

    uint8_t* const dst = &buffer[y * w * 4];

    for (int x = 0; x < w; ++x) {
      float u = scale_u * x;

      const int lx = (int)floor(u);

      const int lx_next = (lx + 1) % lattice_w;

      float fu = smooth(u - lx);

      float n00 = n0[lx];

      float n10 = n0[lx_next];

      float n01 = n1[lx];

      float n11 = n1[lx_next];

      const float noise = mix(mix(n00, n10, fu), mix(n01, n11, fu), fv);

      const uint8_t val = (uint8_t)(noise * 255.0f);

      dst[4 * x + 0] = val; // R

      dst[4 * x + 1] = val; // G

      dst[4 * x + 2] = val; // B

      dst[4 * x + 3] = 255; // A
    }
  }

  free(lattice);

  return true;
}

// Simple grid generator
// Params[0]: Grid Size (pixels)
// Params[1]: Line Thickness (pixels)
bool gen_grid(uint8_t* buffer, int w, int h, const float* params,
              int num_params) {
  int grid_size = (num_params > 0) ? (int)params[0] : 32;
  int thickness = (num_params > 1) ? (int)params[1] : 2;

  if (grid_size < 1)
    grid_size = 32;

  for (int y = 0; y < h; ++y) {
    for (int x = 0; x < w; ++x) {
      bool on_line =
          ((x % grid_size) < thickness) || ((y % grid_size) < thickness);

      int idx = (y * w + x) * 4;
      uint8_t val = on_line ? 255 : 0;

      buffer[idx + 0] = val;
      buffer[idx + 1] = val;
      buffer[idx + 2] = val;
      buffer[idx + 3] = 255;
    }
  }
  return true;
}

bool make_periodic(uint8_t* buffer, int w, int h, const float* params,
                   int num_params) {
  float ratio = (num_params > 0) ? params[0] : 0.1f;
  if (ratio <= 0.0f)
    return true;
  if (ratio > 0.5f)
    ratio = 0.5f;

  const int bx = (int)(w * ratio);
  const int by = (int)(h * ratio);
  const float scale_x = 1. / bx;
  const float scale_y = 1. / by;

  // X pass: blend right edge into left edge
  for (int y = 0; y < h; ++y) {
    for (int x = 0; x < bx; ++x) {
      const float t = smooth(scale_x * x);

      const int idx_dst = (y * w + x) * 4;
      const int idx_src = (y * w + (w - bx + x)) * 4;

      for (int c = 0; c < 3; ++c) {
        const float v_dst = buffer[idx_dst + c];
        const float v_src = buffer[idx_src + c];
        buffer[idx_dst + c] = (uint8_t)mix(v_src, v_dst, t);
      }
    }
  }

  // Y pass
  for (int x = 0; x < w; ++x) {
    for (int y = 0; y < by; ++y) {
      const float t = smooth(scale_y * y);
      const int idx_dst = (y * w + x) * 4;
      const int idx_src = ((h - by + y) * w + x) * 4;

      for (int c = 0; c < 3; ++c) {
        float v_dst = buffer[idx_dst + c];
        float v_src = buffer[idx_src + c];
        buffer[idx_dst + c] = (uint8_t)mix(v_src, v_dst, t);
      }
    }
  }
  return true;
}

} // namespace procedural