summaryrefslogtreecommitdiff
path: root/src/gpu/effects/hybrid_3d_effect.cc
blob: 0dbd7861976e3d9c6f6c352e973a95249fd4f739 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
// This file is part of the 64k demo project.
// It implements the Hybrid3DEffect.

#include "gpu/effects/hybrid_3d_effect.h"
#include "generated/assets.h"
#include "util/asset_manager.h"
#include <cassert>
#include <cmath>
#include <iostream>

Hybrid3DEffect::Hybrid3DEffect(WGPUDevice device, WGPUQueue queue,
                               WGPUTextureFormat format)
    : Effect(device, queue) {
  (void)format; // Passed to base, not directly used here.
}

void Hybrid3DEffect::resize(int width, int height) {
  width_ = width;
  height_ = height;
  renderer_.resize(width_, height_);
}

void Hybrid3DEffect::init(MainSequence* demo) {
  (void)demo;
  WGPUTextureFormat format =
      demo->format; // Get current format from MainSequence (might be different
                    // than constructor if resized)

  renderer_.init(device_, queue_, format);
  renderer_.resize(width_, height_);

  // Texture Manager
  texture_manager_.init(device_, queue_);

  // Load Noise Asset
  size_t size = 0;
  const uint8_t* noise_data = GetAsset(AssetId::ASSET_NOISE_TEX, &size);
  if (noise_data && size == 256 * 256 * 4) {
    texture_manager_.create_texture("noise", 256, 256, noise_data);
    renderer_.set_noise_texture(texture_manager_.get_texture_view("noise"));
  } else {
    std::cerr << "Failed to load NOISE_TEX asset." << std::endl;
  }

  // Setup Scene
  scene_.clear();
  Object3D center(ObjectType::BOX); // Use BOX for bumps
  center.position = vec3(0, 0, 0);
  center.color = vec4(1, 0, 0, 1);
  scene_.add_object(center);

  for (int i = 0; i < 8; ++i) {
    ObjectType type = ObjectType::SPHERE;
    if (i % 3 == 1)
      type = ObjectType::TORUS;
    if (i % 3 == 2)
      type = ObjectType::BOX;

    Object3D obj(type);

    float angle = (i / 8.0f) * 6.28318f;

    obj.position = vec3(std::cos(angle) * 4.0f, 0, std::sin(angle) * 4.0f);

    obj.scale = vec3(0.7f, 0.7f, 0.7f); // Increased scale by 40%

    if (type == ObjectType::SPHERE)
      obj.color = vec4(0, 1, 0, 1);

    else if (type == ObjectType::TORUS)
      obj.color = vec4(0, 0.5, 1, 1);
    else
      obj.color = vec4(1, 1, 0, 1);

    scene_.add_object(obj);
  }
}

// Cubic ease-in/out function for non-linear motion

static float ease_in_out_cubic(float t) {
  t *= 2.0f;

  if (t < 1.0f) {
    return 0.5f * t * t * t;
  }

  t -= 2.0f;

  return 0.5f * (t * t * t + 2.0f);
}

void Hybrid3DEffect::render(WGPURenderPassEncoder pass, float time, float beat,
                            float intensity, float aspect_ratio) {
  // Animate Objects

  for (size_t i = 1; i < scene_.objects.size(); ++i) {
    scene_.objects[i].rotation =
        quat::from_axis(vec3(0, 1, 0), time * 2.0f + i);

    scene_.objects[i].position.y = std::sin(time * 3.0f + i) * 1.5f;
  }

  // Camera jumps every other pattern (2 seconds) for dramatic effect
  int pattern_num = (int)(time / 2.0f);
  int camera_preset = pattern_num % 4;  // Cycle through 4 different angles

  vec3 cam_pos, cam_target;

  switch (camera_preset) {
    case 0:  // High angle, orbiting
      {
        float angle = time * 0.5f;
        cam_pos = vec3(std::sin(angle) * 12.0f, 8.0f, std::cos(angle) * 12.0f);
        cam_target = vec3(0, 0, 0);
      }
      break;
    case 1:  // Low angle, close-up
      {
        float angle = time * 0.3f + 1.57f;  // Offset angle
        cam_pos = vec3(std::sin(angle) * 6.0f, 2.0f, std::cos(angle) * 6.0f);
        cam_target = vec3(0, 1, 0);
      }
      break;
    case 2:  // Side view, sweeping
      {
        float sweep = std::sin(time * 0.4f) * 10.0f;
        cam_pos = vec3(sweep, 5.0f, 8.0f);
        cam_target = vec3(0, 0, 0);
      }
      break;
    case 3:  // Top-down, rotating
      {
        float angle = time * 0.6f;
        cam_pos = vec3(std::sin(angle) * 5.0f, 12.0f, std::cos(angle) * 5.0f);
        cam_target = vec3(0, 0, 0);
      }
      break;
  }

  camera_.set_look_at(cam_pos, cam_target, vec3(0, 1, 0));
  camera_.aspect_ratio = aspect_ratio;

  // Draw

  renderer_.draw(pass, scene_, camera_, time);
}