1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
|
#include "tracker.h"
#include "audio.h"
#include "audio/synth.h"
#include "util/asset_manager.h"
#include "util/debug.h"
#include <cstring>
#include <vector>
static uint32_t g_last_trigger_idx = 0;
// Active pattern instance tracking
struct ActivePattern {
uint16_t pattern_id;
float start_music_time; // When this pattern was triggered (music time)
uint32_t next_event_idx; // Next event to trigger within this pattern
bool active;
};
static ActivePattern g_active_patterns[MAX_SPECTROGRAMS];
struct ManagedSpectrogram {
int synth_id;
float* data;
bool active;
};
// Simple pool for dynamic spectrograms (now for individual notes)
static ManagedSpectrogram g_spec_pool[MAX_SPECTROGRAMS];
static int g_next_pool_slot = 0; // Round-robin allocation
// CACHE: Pre-registered synth_ids for all samples (indexed by sample_id)
// This eliminates redundant spectrogram generation and registration
static int g_sample_synth_cache[256]; // Max 256 unique samples
static bool g_cache_initialized = false;
// Forward declarations
static int get_free_pool_slot();
void tracker_init() {
g_last_trigger_idx = 0;
g_next_pool_slot = 0;
for (int i = 0; i < MAX_SPECTROGRAMS; ++i) {
g_spec_pool[i].synth_id = -1;
g_spec_pool[i].data = nullptr;
g_spec_pool[i].active = false;
g_active_patterns[i].active = false;
}
// Always re-initialize cache to ensure spectrograms are registered
// This handles the case where synth_init() was called multiple times
for (int i = 0; i < 256; ++i) {
g_sample_synth_cache[i] = -1;
}
// Free any previously allocated generated note data to prevent leaks
if (g_cache_initialized) {
for (int i = 0; i < MAX_SPECTROGRAMS; ++i) {
if (g_spec_pool[i].data != nullptr && g_spec_pool[i].active) {
delete[] g_spec_pool[i].data;
g_spec_pool[i].data = nullptr;
g_spec_pool[i].active = false;
}
}
}
// Initialize sample cache
{
for (int i = 0; i < 256; ++i) {
g_sample_synth_cache[i] = -1;
}
// Pre-register all unique samples (assets + generated notes)
for (uint32_t sid = 0; sid < g_tracker_samples_count; ++sid) {
AssetId aid = g_tracker_sample_assets[sid];
if (aid != AssetId::ASSET_LAST_ID) {
// ASSET sample: Load once and cache
size_t size;
const uint8_t* data = GetAsset(aid, &size);
if (data && size >= sizeof(SpecHeader)) {
const SpecHeader* header = (const SpecHeader*)data;
const int note_frames = header->num_frames;
const float* spectral_data =
(const float*)(data + sizeof(SpecHeader));
Spectrogram spec;
spec.spectral_data_a = spectral_data;
spec.spectral_data_b = spectral_data;
spec.num_frames = note_frames;
g_sample_synth_cache[sid] = synth_register_spectrogram(&spec);
#if defined(DEBUG_LOG_TRACKER)
if (g_sample_synth_cache[sid] == -1) {
DEBUG_TRACKER(
"[TRACKER INIT] Failed to cache asset sample_id=%d (aid=%d)\n",
sid, (int)aid);
}
#endif /* defined(DEBUG_LOG_TRACKER) */
}
} else {
// GENERATED note: Generate once and cache
const NoteParams& params = g_tracker_samples[sid];
int note_frames = 0;
std::vector<float> note_data =
generate_note_spectrogram(params, ¬e_frames);
if (note_frames > 0) {
// Allocate persistent storage for this note
const int slot = get_free_pool_slot();
g_spec_pool[slot].data = new float[note_data.size()];
memcpy(g_spec_pool[slot].data, note_data.data(),
note_data.size() * sizeof(float));
Spectrogram spec;
spec.spectral_data_a = g_spec_pool[slot].data;
spec.spectral_data_b = g_spec_pool[slot].data;
spec.num_frames = note_frames;
g_sample_synth_cache[sid] = synth_register_spectrogram(&spec);
g_spec_pool[slot].synth_id = g_sample_synth_cache[sid];
g_spec_pool[slot].active = true; // Mark as permanently allocated
#if defined(DEBUG_LOG_TRACKER)
if (g_sample_synth_cache[sid] == -1) {
DEBUG_TRACKER(
"[TRACKER INIT] Failed to cache generated sample_id=%d "
"(freq=%.2f)\n",
sid, params.base_freq);
}
#endif /* defined(DEBUG_LOG_TRACKER) */
}
}
}
g_cache_initialized = true;
#if defined(DEBUG_LOG_TRACKER)
DEBUG_TRACKER("[TRACKER INIT] Cached %d unique samples\n",
g_tracker_samples_count);
#endif /* defined(DEBUG_LOG_TRACKER) */
}
}
void tracker_reset() {
g_last_trigger_idx = 0;
for (int i = 0; i < MAX_SPECTROGRAMS; ++i) {
g_active_patterns[i].active = false;
}
}
static int get_free_pool_slot() {
// Try to find an inactive slot first (unused slots)
for (int i = 0; i < MAX_SPECTROGRAMS; ++i) {
if (!g_spec_pool[i].active)
return i;
}
// If all slots are active, reuse the oldest one (round-robin)
// This automatically handles cleanup of old patterns
const int slot = g_next_pool_slot;
g_next_pool_slot = (g_next_pool_slot + 1) % MAX_SPECTROGRAMS;
return slot;
}
static int get_free_pattern_slot() {
for (int i = 0; i < MAX_SPECTROGRAMS; ++i) {
if (!g_active_patterns[i].active)
return i;
}
return -1; // No free slots
}
// Helper to trigger a single note event (OPTIMIZED with caching)
// start_offset_samples: How many samples into the future to trigger (for
// sample-accurate timing)
static void trigger_note_event(const TrackerEvent& event,
int start_offset_samples) {
#if defined(DEBUG_LOG_TRACKER)
// VALIDATION: Check sample_id bounds
if (event.sample_id >= g_tracker_samples_count) {
DEBUG_TRACKER("[TRACKER ERROR] Invalid sample_id=%d (max=%d)\n",
event.sample_id, g_tracker_samples_count - 1);
return;
}
// VALIDATION: Check volume and pan ranges
if (event.volume < 0.0f || event.volume > 2.0f) {
DEBUG_TRACKER("[TRACKER WARNING] Unusual volume=%.2f for sample_id=%d\n",
event.volume, event.sample_id);
}
if (event.pan < -1.0f || event.pan > 1.0f) {
DEBUG_TRACKER("[TRACKER WARNING] Invalid pan=%.2f for sample_id=%d\n",
event.pan, event.sample_id);
}
#endif /* defined(DEBUG_LOG_TRACKER) */
// OPTIMIZED: Use cached synth_id instead of regenerating spectrogram
const int cached_synth_id = g_sample_synth_cache[event.sample_id];
#if defined(DEBUG_LOG_TRACKER)
if (cached_synth_id == -1) {
DEBUG_TRACKER(
"[TRACKER ERROR] No cached synth_id for sample_id=%d (init failed?)\n",
event.sample_id);
return;
}
#endif /* defined(DEBUG_LOG_TRACKER) */
if (cached_synth_id == -1) {
return;
}
// Trigger voice with sample-accurate offset
synth_trigger_voice(cached_synth_id, event.volume, event.pan,
start_offset_samples);
}
void tracker_update(float music_time_sec) {
// Unit-less timing: 1 unit = 4 beats (by convention)
const float BEATS_PER_UNIT = 4.0f;
const float unit_duration_sec =
(BEATS_PER_UNIT / g_tracker_score.bpm) * 60.0f;
// Step 1: Process new pattern triggers
while (g_last_trigger_idx < g_tracker_score.num_triggers) {
const TrackerPatternTrigger& trigger =
g_tracker_score.triggers[g_last_trigger_idx];
const float trigger_time_sec = trigger.unit_time * unit_duration_sec;
if (trigger_time_sec > music_time_sec)
break;
// Add this pattern to active patterns list
const int slot = get_free_pattern_slot();
if (slot != -1) {
g_active_patterns[slot].pattern_id = trigger.pattern_id;
g_active_patterns[slot].start_music_time = trigger_time_sec;
g_active_patterns[slot].next_event_idx = 0;
g_active_patterns[slot].active = true;
}
g_last_trigger_idx++;
}
// Step 2: Update all active patterns and trigger individual events
// NOTE: We trigger events immediately when their time passes (no sample
// offsets) This gives ~16ms quantization (60fps) which is acceptable Sample
// offsets don't work with tempo scaling because music_time and render_time
// are in different time domains (tempo-scaled vs physical)
for (int i = 0; i < MAX_SPECTROGRAMS; ++i) {
if (!g_active_patterns[i].active)
continue;
ActivePattern& active = g_active_patterns[i];
const TrackerPattern& pattern = g_tracker_patterns[active.pattern_id];
// Calculate elapsed unit-less time since pattern started
const float elapsed_music_time = music_time_sec - active.start_music_time;
const float elapsed_units = elapsed_music_time / unit_duration_sec;
// Trigger all events that have passed their unit time
while (active.next_event_idx < pattern.num_events) {
const TrackerEvent& event = pattern.events[active.next_event_idx];
if (event.unit_time > elapsed_units)
break; // This event hasn't reached its time yet
// Trigger this event immediately (no sample offset)
// Timing quantization: ~16ms at 60fps, acceptable for rhythm
trigger_note_event(event, 0);
active.next_event_idx++;
}
// Pattern remains active until full duration elapses
if (elapsed_units >= pattern.unit_length) {
active.active = false;
}
}
}
|