1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
|
// 3D SDF primitives
fn sdSphere(p: vec3<f32>, r: f32) -> f32 {
return length(p) - r;
}
fn sdBox(p: vec3<f32>, b: vec3<f32>) -> f32 {
let q = abs(p) - b;
return length(max(q, vec3<f32>(0.0))) + min(max(q.x, max(q.y, q.z)), 0.0);
}
fn sdTorus(p: vec3<f32>, t: vec2<f32>) -> f32 {
let q = vec2<f32>(length(p.xz) - t.x, p.y);
return length(q) - t.y;
}
fn sdPlane(p: vec3<f32>, n: vec3<f32>, h: f32) -> f32 {
return dot(p, n) + h;
}
// 2D SDF primitives
fn sdBox2D(p: vec2<f32>, b: vec2<f32>) -> f32 {
let d = abs(p) - b;
return length(max(d, vec2<f32>(0.0))) + min(max(d.x, d.y), 0.0);
}
fn sdEllipse(p: vec2<f32>, ab: vec2<f32>) -> f32 {
var p_abs = abs(p);
if (p_abs.x > p_abs.y) {
p_abs = vec2<f32>(p_abs.y, p_abs.x);
}
let l = ab.y * ab.y - ab.x * ab.x;
let m = ab.x * p_abs.x / l;
let n = ab.y * p_abs.y / l;
let m2 = m * m;
let n2 = n * n;
let c = (m2 + n2 - 1.0) / 3.0;
let c3 = c * c * c;
let d = c3 + m2 * n2;
let g = m + m * n2;
var co: f32;
if (d < 0.0) {
let h = acos((c3 + m2 * n2 * 2.0) / c3) / 3.0;
let s = cos(h);
let t = sin(h) * sqrt(3.0);
co = (sqrt(-c * (s + t * 2.0) + m2) + sign(l) * sqrt(-c * (s - t * 2.0) + m2) + abs(g) / (sqrt(-c * (s + t * 2.0) + m2) * sqrt(-c * (s - t * 2.0) + m2)) - m) / 2.0;
} else {
let h = 2.0 * m * n * sqrt(d);
let s = sign(c3 + m2 * n2 + h) * pow(abs(c3 + m2 * n2 + h), 1.0 / 3.0);
let u = sign(c3 + m2 * n2 - h) * pow(abs(c3 + m2 * n2 - h), 1.0 / 3.0);
let rx = -s - u + m2 * 2.0;
let ry = (s - u) * sqrt(3.0);
co = (ry / sqrt(sqrt(rx * rx + ry * ry) - rx) + 2.0 * g / sqrt(rx * rx + ry * ry) - m) / 2.0;
}
let si = sqrt(max(0.0, 1.0 - co * co));
return length(p_abs - vec2<f32>(ab.x * co, ab.y * si)) * sign(p_abs.y * ab.x * co - p_abs.x * ab.y * si);
}
|