1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
|
#include "common_uniforms"
@group(0) @binding(0) var<uniform> globals: GlobalUniforms;
@group(0) @binding(1) var<storage, read> object_data: ObjectsBuffer;
// Binding 2 is reserved for BVH (not used here but matches layout for simplicity)
@group(0) @binding(3) var noise_tex: texture_2d<f32>;
@group(0) @binding(4) var noise_sampler: sampler;
@group(0) @binding(5) var sky_tex: texture_2d<f32>;
struct VertexInput {
@location(0) position: vec3<f32>,
@location(1) normal: vec3<f32>,
@location(2) uv: vec2<f32>,
};
struct VertexOutput {
@builtin(position) clip_pos: vec4<f32>,
@location(0) world_pos: vec3<f32>,
@location(1) normal: vec3<f32>,
@location(2) uv: vec2<f32>,
@location(3) color: vec4<f32>,
@location(4) @interpolate(flat) instance_index: u32,
};
@vertex
fn vs_main(in: VertexInput, @builtin(instance_index) instance_index: u32) -> VertexOutput {
let obj = object_data.objects[instance_index];
let world_pos = obj.model * vec4<f32>(in.position, 1.0);
var out: VertexOutput;
out.clip_pos = globals.view_proj * world_pos;
out.world_pos = world_pos.xyz;
// Use transpose of inverse for normals
// Note: mat3x3 constructor takes columns, so passing rows gives us transpose
let normal_matrix = mat3x3<f32>(obj.inv_model[0].xyz, obj.inv_model[1].xyz, obj.inv_model[2].xyz);
out.normal = normalize(normal_matrix * in.normal);
out.uv = in.uv;
out.color = obj.color;
out.instance_index = instance_index;
return out;
}
#include "render/scene_query_mode"
#include "render/shadows"
#include "render/lighting_utils"
@fragment
fn fs_main(in: VertexOutput) -> @location(0) vec4<f32> {
let light_dir = normalize(vec3<f32>(1.0, 1.0, 1.0));
let shadow = calc_shadow(in.world_pos, light_dir, 0.05, 20.0, in.instance_index);
let lit_color = calculate_lighting(in.color.rgb, in.normal, in.world_pos, shadow);
return vec4<f32>(lit_color, in.color.a);
}
|