summaryrefslogtreecommitdiff
path: root/assets/final/shaders/math/sdf_utils.wgsl
blob: 660a4cece116401d90e30ca5898cdb57e47cbcea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
fn get_normal_basic(p: vec3<f32>, obj_params: vec4<f32>) -> vec3<f32> {
    let obj_type = obj_params.x;
    if (obj_type == 1.0) { return normalize(p); }
    let e = vec2<f32>(0.001, 0.0);
    return normalize(vec3<f32>(
        get_dist(p + e.xyy, obj_params) - get_dist(p - e.xyy, obj_params),
        get_dist(p + e.yxy, obj_params) - get_dist(p - e.yxy, obj_params),
        get_dist(p + e.yyx, obj_params) - get_dist(p - e.yyx, obj_params)
    ));
}

// Optimized normal estimation using tetrahedron pattern (4 SDF evals instead of 6).
// Slightly less accurate than central differences but faster.
// Uses tetrahedral gradient approximation with corners at (±1, ±1, ±1).
fn get_normal_fast(p: vec3<f32>, obj_params: vec4<f32>) -> vec3<f32> {
    let obj_type = obj_params.x;
    if (obj_type == 1.0) { return normalize(p); }
    let eps = 0.0001;
    let k = vec2<f32>(1.0, -1.0);
    return normalize(
        k.xyy * get_dist(p + k.xyy * eps, obj_params) +
        k.yyx * get_dist(p + k.yyx * eps, obj_params) +
        k.yxy * get_dist(p + k.yxy * eps, obj_params) +
        k.xxx * get_dist(p + k.xxx * eps, obj_params)
    );
}

// Bump-mapped normal using central differences (6 samples: SDF + texture).
// High quality, suitable for detailed surfaces with displacement mapping.
// Note: Requires spherical_uv() function and get_dist() to be available in calling context.
fn get_normal_bump(
    p: vec3<f32>,
    obj_params: vec4<f32>,
    noise_tex: texture_2d<f32>,
    noise_sampler: sampler,
    disp_strength: f32
) -> vec3<f32> {
    let e = vec2<f32>(0.005, 0.0);

    let q_x1 = p + e.xyy;
    let uv_x1 = spherical_uv(q_x1);
    let h_x1 = textureSample(noise_tex, noise_sampler, uv_x1).r;
    let d_x1 = get_dist(q_x1, obj_params) - disp_strength * h_x1;

    let q_x2 = p - e.xyy;
    let uv_x2 = spherical_uv(q_x2);
    let h_x2 = textureSample(noise_tex, noise_sampler, uv_x2).r;
    let d_x2 = get_dist(q_x2, obj_params) - disp_strength * h_x2;

    let q_y1 = p + e.yxy;
    let uv_y1 = spherical_uv(q_y1);
    let h_y1 = textureSample(noise_tex, noise_sampler, uv_y1).r;
    let d_y1 = get_dist(q_y1, obj_params) - disp_strength * h_y1;

    let q_y2 = p - e.yxy;
    let uv_y2 = spherical_uv(q_y2);
    let h_y2 = textureSample(noise_tex, noise_sampler, uv_y2).r;
    let d_y2 = get_dist(q_y2, obj_params) - disp_strength * h_y2;

    let q_z1 = p + e.yyx;
    let uv_z1 = spherical_uv(q_z1);
    let h_z1 = textureSample(noise_tex, noise_sampler, uv_z1).r;
    let d_z1 = get_dist(q_z1, obj_params) - disp_strength * h_z1;

    let q_z2 = p - e.yyx;
    let uv_z2 = spherical_uv(q_z2);
    let h_z2 = textureSample(noise_tex, noise_sampler, uv_z2).r;
    let d_z2 = get_dist(q_z2, obj_params) - disp_strength * h_z2;

    return normalize(vec3<f32>(d_x1 - d_x2, d_y1 - d_y2, d_z1 - d_z2));
}

// Optimized bump-mapped normal using tetrahedron pattern (4 samples instead of 6).
// 33% faster than get_normal_bump(), slightly less accurate.
// Suitable for real-time rendering with displacement mapping.
fn get_normal_bump_fast(
    p: vec3<f32>,
    obj_params: vec4<f32>,
    noise_tex: texture_2d<f32>,
    noise_sampler: sampler,
    disp_strength: f32
) -> vec3<f32> {
    let eps = 0.0005;
    let k = vec2<f32>(1.0, -1.0);

    let q1 = p + k.xyy * eps;
    let uv1 = spherical_uv(q1);
    let h1 = textureSample(noise_tex, noise_sampler, uv1).r;
    let d1 = get_dist(q1, obj_params) - disp_strength * h1;

    let q2 = p + k.yyx * eps;
    let uv2 = spherical_uv(q2);
    let h2 = textureSample(noise_tex, noise_sampler, uv2).r;
    let d2 = get_dist(q2, obj_params) - disp_strength * h2;

    let q3 = p + k.yxy * eps;
    let uv3 = spherical_uv(q3);
    let h3 = textureSample(noise_tex, noise_sampler, uv3).r;
    let d3 = get_dist(q3, obj_params) - disp_strength * h3;

    let q4 = p + k.xxx * eps;
    let uv4 = spherical_uv(q4);
    let h4 = textureSample(noise_tex, noise_sampler, uv4).r;
    let d4 = get_dist(q4, obj_params) - disp_strength * h4;

    return normalize(k.xyy * d1 + k.yyx * d2 + k.yxy * d3 + k.xxx * d4);
}

// Distance to an Axis-Aligned Bounding Box
fn aabb_sdf(p: vec3<f32>, min_p: vec3<f32>, max_p: vec3<f32>) -> f32 {
    let center = (min_p + max_p) * 0.5;
    let extent = (max_p - min_p) * 0.5;
    let q = abs(p - center) - extent;
    return length(max(q, vec3<f32>(0.0))) + min(max(q.x, max(q.y, q.z)), 0.0);
}