summaryrefslogtreecommitdiff
path: root/training
AgeCommit message (Expand)Author
8 hoursCNN v2: Change feature #6 from sin(10*x) to sin(20*y)skal
8 hoursCNN v2: Add TODO for flexible feature layout in binary format v3skal
8 hoursCNN v2: Add mip-level support to runtime effectskal
8 hoursCNN v2 export: Read and display mip_level from checkpointsskal
8 hoursCNN v2: Add --mip-level option for parametric featuresskal
9 hoursCNN v2: Fix activation function mismatch between training and inferenceskal
12 hoursCNN v2 training: Use target image alpha channelskal
12 hoursCNN v2: Restore per-layer kernel sizes supportskal
12 hoursCNN v2: Refactor to uniform 12D→4D architectureskal
17 hoursAdd weights/ subdirectory to workspaces for CNN training outputsskal
34 hourstest_demo: Add beat-synchronized CNN post-processing with version selectionskal
37 hoursRefine training script output and validationskal
37 hoursTODO: 8-bit weight quantization for 2× size reductionskal
37 hoursCNN v2: Storage buffer complete - real weights exportedskal
37 hoursCNN v2: storage buffer architecture foundationskal
37 hoursTODO: Add random sampling to patch-based trainingskal
37 hoursCNN v2: Patch-based training as default (like CNN v1)skal
37 hoursFix: CNN v2 training - handle variable image sizesskal
37 hoursCNN v2: parametric static features - Phases 1-4skal
39 hoursremove more stale filesskal
2 daysfeat: implement beat-based timing systemskal
2 daysadd trained layersskal
2 daysdocs: Update CNN comments and add bias fix summaryskal
2 daysfix: CNN bias accumulation and output format improvementsskal
2 daysupdate cnn codeskal
2 daysrefactor: Use linspace(-1,1) directly for coordsskal
2 daysfix: Compute gray from [0,1] RGB in CNN shader generatorskal
3 daysfix: Complete auxiliary texture initialization fixskal
3 daysadd --save-intermediates to train.py and cnn_testskal
3 daysfix: Move sigmoid activation to call site in CNN layer shaderskal
3 daysfix: Replace clamp with sigmoid in CNN final layerskal
3 daysfeat: Add early stopping to CNN trainingskal
3 daysfix: CNN training/inference to match WGSL sliding windowskal
3 daysformat .wgsl layer code (cosmetics)skal
3 daysfix: Use patch-based inference to match CNN training distributionskal
3 daysopt: Move invariant in1 calculation outside CNN convolution loopsskal
3 daysopt: Vec4-optimize CNN convolution shaders for SIMDskal
3 dayschore: Update CNN architecture to 3×3×3 with new trained weightsskal
3 daysdocs: Update CNN training documentation with patch extractionskal
3 daysfeat: Add salient-point patch extraction for CNN trainingskal
3 daysfix: Correct UV coordinate computation to match PyTorch linspaceskal
3 daysfix: Add clamp to CNN final layer to match PyTorch trainingskal
3 daysrefactor: Optimize CNN grayscale computationskal
3 daysupdate train_cnn.py and shaderskal
3 daysfeat: Add inference mode to train_cnn.py for ground truth generationskal
3 daysfix: CNN training normalization pipeline consistencyskal
3 daysrefactor: Optimize CNN normalization to eliminate redundant conversionsskal
3 daysfix: Support variable kernel sizes in CNN layer generationskal
3 daysfeat: CNN RGBD→grayscale with 7-channel augmented inputskal
3 daysudpateskal