index
:
demo.git
main
Vide-coded 64k demo system
summary
refs
log
tree
commit
diff
log msg
author
committer
range
path:
root
/
training
Age
Commit message (
Expand
)
Author
11 hours
gen_identity_weights: Change --mix to 50-50 blend
skal
11 hours
gen_identity_weights: Add --p47 option for static feature visualization
skal
11 hours
gen_identity_weights: Add --mix option for static feature blending
skal
12 hours
CNN v2: Fix Layer 0 visualization scale (was 0.5, now 1.0)
skal
12 hours
CNN v2: Add debugging tools for mismatch investigation
skal
12 hours
CNN v2 training: Fix float64/float32 dtype mismatch in depth feature
skal
12 hours
CNN v2: Alpha channel depth handling and layer visualization
skal
13 hours
CNN v2: Use alpha channel for p3 depth feature + layer visualization
skal
18 hours
CNN v2 training: Add --grayscale-loss option for luminance-based loss computa...
skal
19 hours
CNN v2: Change feature #6 from sin(10*x) to sin(20*y)
skal
19 hours
CNN v2: Add TODO for flexible feature layout in binary format v3
skal
19 hours
CNN v2: Add mip-level support to runtime effect
skal
19 hours
CNN v2 export: Read and display mip_level from checkpoints
skal
19 hours
CNN v2: Add --mip-level option for parametric features
skal
20 hours
CNN v2: Fix activation function mismatch between training and inference
skal
23 hours
CNN v2 training: Use target image alpha channel
skal
23 hours
CNN v2: Restore per-layer kernel sizes support
skal
23 hours
CNN v2: Refactor to uniform 12D→4D architecture
skal
27 hours
Add weights/ subdirectory to workspaces for CNN training outputs
skal
45 hours
test_demo: Add beat-synchronized CNN post-processing with version selection
skal
47 hours
Refine training script output and validation
skal
48 hours
TODO: 8-bit weight quantization for 2× size reduction
skal
48 hours
CNN v2: Storage buffer complete - real weights exported
skal
48 hours
CNN v2: storage buffer architecture foundation
skal
48 hours
TODO: Add random sampling to patch-based training
skal
48 hours
CNN v2: Patch-based training as default (like CNN v1)
skal
48 hours
Fix: CNN v2 training - handle variable image sizes
skal
2 days
CNN v2: parametric static features - Phases 1-4
skal
2 days
remove more stale files
skal
2 days
feat: implement beat-based timing system
skal
2 days
add trained layers
skal
3 days
docs: Update CNN comments and add bias fix summary
skal
3 days
fix: CNN bias accumulation and output format improvements
skal
3 days
update cnn code
skal
3 days
refactor: Use linspace(-1,1) directly for coords
skal
3 days
fix: Compute gray from [0,1] RGB in CNN shader generator
skal
3 days
fix: Complete auxiliary texture initialization fix
skal
3 days
add --save-intermediates to train.py and cnn_test
skal
3 days
fix: Move sigmoid activation to call site in CNN layer shader
skal
3 days
fix: Replace clamp with sigmoid in CNN final layer
skal
3 days
feat: Add early stopping to CNN training
skal
3 days
fix: CNN training/inference to match WGSL sliding window
skal
3 days
format .wgsl layer code (cosmetics)
skal
3 days
fix: Use patch-based inference to match CNN training distribution
skal
3 days
opt: Move invariant in1 calculation outside CNN convolution loops
skal
4 days
opt: Vec4-optimize CNN convolution shaders for SIMD
skal
4 days
chore: Update CNN architecture to 3×3×3 with new trained weights
skal
4 days
docs: Update CNN training documentation with patch extraction
skal
4 days
feat: Add salient-point patch extraction for CNN training
skal
4 days
fix: Correct UV coordinate computation to match PyTorch linspace
skal
[next]