summaryrefslogtreecommitdiff
path: root/workspaces/main/shaders/cnn/cnn_layer.wgsl
diff options
context:
space:
mode:
Diffstat (limited to 'workspaces/main/shaders/cnn/cnn_layer.wgsl')
-rw-r--r--workspaces/main/shaders/cnn/cnn_layer.wgsl55
1 files changed, 0 insertions, 55 deletions
diff --git a/workspaces/main/shaders/cnn/cnn_layer.wgsl b/workspaces/main/shaders/cnn/cnn_layer.wgsl
deleted file mode 100644
index cbd1686..0000000
--- a/workspaces/main/shaders/cnn/cnn_layer.wgsl
+++ /dev/null
@@ -1,55 +0,0 @@
-// CNN layer shader - uses modular convolution snippets
-// Supports multi-pass rendering with residual connections
-// DO NOT EDIT - Generated by train_cnn.py
-
-@group(0) @binding(0) var smplr: sampler;
-@group(0) @binding(1) var txt: texture_2d<f32>;
-
-#include "common_uniforms"
-#include "cnn_activation"
-#include "cnn_conv3x3"
-#include "cnn_conv5x5"
-#include "cnn_weights_generated"
-
-struct CNNLayerParams {
- layer_index: i32,
- blend_amount: f32,
- _pad: vec2<f32>,
-};
-
-@group(0) @binding(2) var<uniform> uniforms: CommonUniforms;
-@group(0) @binding(3) var<uniform> params: CNNLayerParams;
-@group(0) @binding(4) var original_input: texture_2d<f32>;
-
-@vertex fn vs_main(@builtin(vertex_index) i: u32) -> @builtin(position) vec4<f32> {
- var pos = array<vec2<f32>, 3>(
- vec2<f32>(-1.0, -1.0), vec2<f32>(3.0, -1.0), vec2<f32>(-1.0, 3.0)
- );
- return vec4<f32>(pos[i], 0.0, 1.0);
-}
-
-@fragment fn fs_main(@builtin(position) p: vec4<f32>) -> @location(0) vec4<f32> {
- // Match PyTorch linspace
- let uv = (p.xy - 0.5) / (uniforms.resolution - 1.0);
- let original_raw = textureSample(original_input, smplr, uv);
- let original = (original_raw - 0.5) * 2.0; // Normalize to [-1,1]
- let gray = (dot(original_raw.rgb, vec3<f32>(0.2126, 0.7152, 0.0722)) - 0.5) * 2.0;
- var result = vec4<f32>(0.0);
-
- // Layer 0: 7→4 (RGBD output, normalizes [0,1] input)
- if (params.layer_index == 0) {
- result = cnn_conv5x5_7to4_src(txt, smplr, uv, uniforms.resolution, weights_layer0);
- result = cnn_tanh(result);
- }
- else if (params.layer_index == 1) {
- result = cnn_conv3x3_7to4(txt, smplr, uv, uniforms.resolution, gray, weights_layer1);
- result = cnn_tanh(result); // Keep in [-1,1]
- }
- else if (params.layer_index == 2) {
- let sum = cnn_conv3x3_7to1(txt, smplr, uv, uniforms.resolution, gray, weights_layer2);
- let gray_out = 1.0 / (1.0 + exp(-sum)); // Sigmoid activation
- result = vec4<f32>(gray_out, gray_out, gray_out, 1.0);
- return mix(original_raw, result, params.blend_amount); // [0,1]
- }
- return result; // [-1,1]
-}