diff options
Diffstat (limited to 'workspaces/main/shaders/cnn/cnn_layer.wgsl')
| -rw-r--r-- | workspaces/main/shaders/cnn/cnn_layer.wgsl | 31 |
1 files changed, 21 insertions, 10 deletions
diff --git a/workspaces/main/shaders/cnn/cnn_layer.wgsl b/workspaces/main/shaders/cnn/cnn_layer.wgsl index b2bab26..1b1b539 100644 --- a/workspaces/main/shaders/cnn/cnn_layer.wgsl +++ b/workspaces/main/shaders/cnn/cnn_layer.wgsl @@ -1,5 +1,6 @@ // CNN layer shader - uses modular convolution snippets // Supports multi-pass rendering with residual connections +// DO NOT EDIT - Generated by train_cnn.py @group(0) @binding(0) var smplr: sampler; @group(0) @binding(1) var txt: texture_2d<f32>; @@ -7,16 +8,18 @@ #include "common_uniforms" #include "cnn_activation" #include "cnn_conv3x3" +#include "cnn_conv5x5" #include "cnn_weights_generated" struct CNNLayerParams { layer_index: i32, - use_residual: i32, + blend_amount: f32, _pad: vec2<f32>, }; @group(0) @binding(2) var<uniform> uniforms: CommonUniforms; @group(0) @binding(3) var<uniform> params: CNNLayerParams; +@group(0) @binding(4) var original_input: texture_2d<f32>; @vertex fn vs_main(@builtin(vertex_index) i: u32) -> @builtin(position) vec4<f32> { var pos = array<vec2<f32>, 3>( @@ -27,20 +30,28 @@ struct CNNLayerParams { @fragment fn fs_main(@builtin(position) p: vec4<f32>) -> @location(0) vec4<f32> { let uv = p.xy / uniforms.resolution; + let original = (textureSample(original_input, smplr, uv) - 0.5) * 2.0; // Normalize to [-1,1] var result = vec4<f32>(0.0); - // Layer 0 uses coordinate-aware convolution + // Layer 0: 7→4 (RGBD output) if (params.layer_index == 0) { - result = cnn_conv3x3_with_coord(txt, smplr, uv, uniforms.resolution, - rgba_weights_layer0, coord_weights_layer0, bias_layer0); - result = cnn_tanh(result); + result = cnn_conv3x3_7to4_src(txt, smplr, uv, uniforms.resolution, weights_layer0); + result = cnn_tanh(result); // Keep in [-1,1] } - - // Residual connection - if (params.use_residual != 0) { - let input = textureSample(txt, smplr, uv); - result = input + result * 0.3; + else if (params.layer_index == 1) { + result = cnn_conv5x5_7to4(txt, smplr, uv, uniforms.resolution, + original, weights_layer1); + result = cnn_tanh(result); // Keep in [-1,1] } + else if (params.layer_index == 2) { // last layer + let gray_out = cnn_conv3x3_7to1(txt, smplr, uv, uniforms.resolution, + original, weights_layer2); + // At this point here, 'gray_out' is what the training script should have learned. + // Below is some extra code for visual output, excluded from training: + result = vec4<f32>(gray_out, gray_out, gray_out, 1.0); // Keep in [-1,1] + let blended = mix(original, result, params.blend_amount); + return (blended + 1.0) * 0.5; // Denormalize to [0,1] for display + } return result; } |
