diff options
Diffstat (limited to 'training')
| -rwxr-xr-x | training/export_cnn_v2_weights.py | 52 | ||||
| -rwxr-xr-x | training/gen_identity_weights.py | 171 | ||||
| -rwxr-xr-x | training/train_cnn_v2.py | 28 |
3 files changed, 228 insertions, 23 deletions
diff --git a/training/export_cnn_v2_weights.py b/training/export_cnn_v2_weights.py index 1086516..f64bd8d 100755 --- a/training/export_cnn_v2_weights.py +++ b/training/export_cnn_v2_weights.py @@ -12,7 +12,7 @@ import struct from pathlib import Path -def export_weights_binary(checkpoint_path, output_path): +def export_weights_binary(checkpoint_path, output_path, quiet=False): """Export CNN v2 weights to binary format. Binary format: @@ -40,7 +40,8 @@ def export_weights_binary(checkpoint_path, output_path): Returns: config dict for shader generation """ - print(f"Loading checkpoint: {checkpoint_path}") + if not quiet: + print(f"Loading checkpoint: {checkpoint_path}") checkpoint = torch.load(checkpoint_path, map_location='cpu') state_dict = checkpoint['model_state_dict'] @@ -59,11 +60,12 @@ def export_weights_binary(checkpoint_path, output_path): num_layers = config.get('num_layers', len(kernel_sizes)) mip_level = config.get('mip_level', 0) - print(f"Configuration:") - print(f" Kernel sizes: {kernel_sizes}") - print(f" Layers: {num_layers}") - print(f" Mip level: {mip_level} (p0-p3 features)") - print(f" Architecture: uniform 12D→4D (bias=False)") + if not quiet: + print(f"Configuration:") + print(f" Kernel sizes: {kernel_sizes}") + print(f" Layers: {num_layers}") + print(f" Mip level: {mip_level} (p0-p3 features)") + print(f" Architecture: uniform 12D→4D (bias=False)") # Collect layer info - all layers uniform 12D→4D layers = [] @@ -89,7 +91,8 @@ def export_weights_binary(checkpoint_path, output_path): all_weights.extend(layer_flat) weight_offset += len(layer_flat) - print(f" Layer {i}: 12D→4D, {kernel_size}×{kernel_size}, {len(layer_flat)} weights") + if not quiet: + print(f" Layer {i}: 12D→4D, {kernel_size}×{kernel_size}, {len(layer_flat)} weights") # Convert to f16 # TODO: Use 8-bit quantization for 2× size reduction @@ -104,11 +107,13 @@ def export_weights_binary(checkpoint_path, output_path): # Pack pairs using numpy view weights_u32 = all_weights_f16.view(np.uint32) - print(f"\nWeight statistics:") - print(f" Total layers: {len(layers)}") - print(f" Total weights: {len(all_weights_f16)} (f16)") - print(f" Packed: {len(weights_u32)} u32") - print(f" Binary size: {20 + len(layers) * 20 + len(weights_u32) * 4} bytes") + binary_size = 20 + len(layers) * 20 + len(weights_u32) * 4 + if not quiet: + print(f"\nWeight statistics:") + print(f" Total layers: {len(layers)}") + print(f" Total weights: {len(all_weights_f16)} (f16)") + print(f" Packed: {len(weights_u32)} u32") + print(f" Binary size: {binary_size} bytes") # Write binary file output_path = Path(output_path) @@ -135,7 +140,10 @@ def export_weights_binary(checkpoint_path, output_path): # Weights (u32 packed f16 pairs) f.write(weights_u32.tobytes()) - print(f" → {output_path}") + if quiet: + print(f" Exported {num_layers} layers, {len(all_weights_f16)} weights, {binary_size} bytes → {output_path}") + else: + print(f" → {output_path}") return { 'num_layers': len(layers), @@ -257,15 +265,19 @@ def main(): help='Output binary weights file') parser.add_argument('--output-shader', type=str, default='workspaces/main/shaders', help='Output directory for shader template') + parser.add_argument('--quiet', action='store_true', + help='Suppress detailed output') args = parser.parse_args() - print("=== CNN v2 Weight Export ===\n") - config = export_weights_binary(args.checkpoint, args.output_weights) - print() - # Shader is manually maintained in cnn_v2_compute.wgsl - # export_shader_template(config, args.output_shader) - print("\nExport complete!") + if not args.quiet: + print("=== CNN v2 Weight Export ===\n") + config = export_weights_binary(args.checkpoint, args.output_weights, quiet=args.quiet) + if not args.quiet: + print() + # Shader is manually maintained in cnn_v2_compute.wgsl + # export_shader_template(config, args.output_shader) + print("\nExport complete!") if __name__ == '__main__': diff --git a/training/gen_identity_weights.py b/training/gen_identity_weights.py new file mode 100755 index 0000000..7865d68 --- /dev/null +++ b/training/gen_identity_weights.py @@ -0,0 +1,171 @@ +#!/usr/bin/env python3 +"""Generate Identity CNN v2 Weights + +Creates trivial .bin with 1 layer, 1×1 kernel, identity passthrough. +Output Ch{0,1,2,3} = Input Ch{0,1,2,3} (ignores static features). + +With --mix: Output Ch{i} = 0.5*prev[i] + 0.5*static_p{4+i} + (50-50 blend of prev layer with uv_x, uv_y, sin20_y, bias) + +With --p47: Output Ch{i} = static p{4+i} (uv_x, uv_y, sin20_y, bias) + (p4/uv_x→ch0, p5/uv_y→ch1, p6/sin20_y→ch2, p7/bias→ch3) + +Usage: + ./training/gen_identity_weights.py [output.bin] + ./training/gen_identity_weights.py --mix [output.bin] + ./training/gen_identity_weights.py --p47 [output.bin] +""" + +import argparse +import numpy as np +import struct +from pathlib import Path + + +def generate_identity_weights(output_path, kernel_size=1, mip_level=0, mix=False, p47=False): + """Generate identity weights: output = input (ignores static features). + + If mix=True, 50-50 blend: 0.5*p0+0.5*p4, 0.5*p1+0.5*p5, etc (avoids overflow). + If p47=True, transfers static p4-p7 (uv_x, uv_y, sin20_y, bias) to output channels. + + Input channel layout: [0-3: prev layer, 4-11: static (p0-p7)] + Static features: p0-p3 (RGB+D), p4 (uv_x), p5 (uv_y), p6 (sin20_y), p7 (bias) + + Binary format: + Header (20 bytes): + uint32 magic ('CNN2') + uint32 version (2) + uint32 num_layers (1) + uint32 total_weights (f16 count) + uint32 mip_level + + LayerInfo (20 bytes): + uint32 kernel_size + uint32 in_channels (12) + uint32 out_channels (4) + uint32 weight_offset (0) + uint32 weight_count + + Weights (u32 packed f16): + Identity matrix for first 4 input channels + Zeros for static features (channels 4-11) OR + Mix matrix (p0+p4, p1+p5, p2+p6, p3+p7) if mix=True + """ + # Identity: 4 output channels, 12 input channels + # Weight shape: [out_ch, in_ch, kernel_h, kernel_w] + in_channels = 12 # 4 input + 8 static + out_channels = 4 + + # Identity matrix: diagonal 1.0 for first 4 channels, 0.0 for rest + weights = np.zeros((out_channels, in_channels, kernel_size, kernel_size), dtype=np.float32) + + # Center position for kernel + center = kernel_size // 2 + + if p47: + # p47 mode: p4→ch0, p5→ch1, p6→ch2, p7→ch3 (static features only) + # Input channels: [0-3: prev layer, 4-11: static features (p0-p7)] + # p4-p7 are at input channels 8-11 + for i in range(out_channels): + weights[i, i + 8, center, center] = 1.0 + elif mix: + # Mix mode: 50-50 blend (p0+p4, p1+p5, p2+p6, p3+p7) + # p0-p3 are at channels 0-3 (prev layer), p4-p7 at channels 8-11 (static) + for i in range(out_channels): + weights[i, i, center, center] = 0.5 # 0.5*p{i} (prev layer) + weights[i, i + 8, center, center] = 0.5 # 0.5*p{i+4} (static) + else: + # Identity: output ch i = input ch i + for i in range(out_channels): + weights[i, i, center, center] = 1.0 + + # Flatten + weights_flat = weights.flatten() + weight_count = len(weights_flat) + + mode_name = 'p47' if p47 else ('mix' if mix else 'identity') + print(f"Generating {mode_name} weights:") + print(f" Kernel size: {kernel_size}×{kernel_size}") + print(f" Channels: 12D→4D") + print(f" Weights: {weight_count}") + print(f" Mip level: {mip_level}") + if mix: + print(f" Mode: 0.5*prev[i] + 0.5*static_p{{4+i}} (blend with uv/sin/bias)") + elif p47: + print(f" Mode: p4→ch0, p5→ch1, p6→ch2, p7→ch3") + + # Convert to f16 + weights_f16 = np.array(weights_flat, dtype=np.float16) + + # Pad to even count + if len(weights_f16) % 2 == 1: + weights_f16 = np.append(weights_f16, np.float16(0.0)) + + # Pack f16 pairs into u32 + weights_u32 = weights_f16.view(np.uint32) + + print(f" Packed: {len(weights_u32)} u32") + print(f" Binary size: {20 + 20 + len(weights_u32) * 4} bytes") + + # Write binary + output_path = Path(output_path) + output_path.parent.mkdir(parents=True, exist_ok=True) + + with open(output_path, 'wb') as f: + # Header (20 bytes) + f.write(struct.pack('<4sIIII', + b'CNN2', # magic + 2, # version + 1, # num_layers + len(weights_f16), # total_weights + mip_level)) # mip_level + + # Layer info (20 bytes) + f.write(struct.pack('<IIIII', + kernel_size, # kernel_size + in_channels, # in_channels + out_channels, # out_channels + 0, # weight_offset + weight_count)) # weight_count + + # Weights (u32 packed f16) + f.write(weights_u32.tobytes()) + + print(f" → {output_path}") + + # Verify + print("\nVerification:") + with open(output_path, 'rb') as f: + data = f.read() + magic, version, num_layers, total_weights, mip = struct.unpack('<4sIIII', data[:20]) + print(f" Magic: {magic}") + print(f" Version: {version}") + print(f" Layers: {num_layers}") + print(f" Total weights: {total_weights}") + print(f" Mip level: {mip}") + print(f" File size: {len(data)} bytes") + + +def main(): + parser = argparse.ArgumentParser(description='Generate identity CNN v2 weights') + parser.add_argument('output', type=str, nargs='?', + default='workspaces/main/weights/cnn_v2_identity.bin', + help='Output .bin file path') + parser.add_argument('--kernel-size', type=int, default=1, + help='Kernel size (default: 1×1)') + parser.add_argument('--mip-level', type=int, default=0, + help='Mip level for p0-p3 features (default: 0)') + parser.add_argument('--mix', action='store_true', + help='Mix mode: 50-50 blend of p0-p3 and p4-p7') + parser.add_argument('--p47', action='store_true', + help='Static features only: p4→ch0, p5→ch1, p6→ch2, p7→ch3') + + args = parser.parse_args() + + print("=== Identity Weight Generator ===\n") + generate_identity_weights(args.output, args.kernel_size, args.mip_level, args.mix, args.p47) + print("\nDone!") + + +if __name__ == '__main__': + main() diff --git a/training/train_cnn_v2.py b/training/train_cnn_v2.py index 70229ce..9e5df2f 100755 --- a/training/train_cnn_v2.py +++ b/training/train_cnn_v2.py @@ -61,7 +61,7 @@ def compute_static_features(rgb, depth=None, mip_level=0): p0 = mip_rgb[:, :, 0].astype(np.float32) p1 = mip_rgb[:, :, 1].astype(np.float32) p2 = mip_rgb[:, :, 2].astype(np.float32) - p3 = depth if depth is not None else np.ones((h, w), dtype=np.float32) # Default 1.0 = far plane + p3 = depth.astype(np.float32) if depth is not None else np.ones((h, w), dtype=np.float32) # Default 1.0 = far plane # UV coordinates (normalized [0, 1]) uv_x = np.linspace(0, 1, w)[None, :].repeat(h, axis=0).astype(np.float32) @@ -121,7 +121,7 @@ class CNNv2(nn.Module): # Layer 0: input RGBD (4D) + static (8D) = 12D x = torch.cat([input_rgbd, static_features], dim=1) x = self.layers[0](x) - x = torch.clamp(x, 0, 1) # Output [0,1] for layer 0 + x = torch.sigmoid(x) # Soft [0,1] for layer 0 # Layer 1+: previous (4D) + static (8D) = 12D for i in range(1, self.num_layers): @@ -130,7 +130,7 @@ class CNNv2(nn.Module): if i < self.num_layers - 1: x = F.relu(x) else: - x = torch.clamp(x, 0, 1) # Final output [0,1] + x = torch.sigmoid(x) # Soft [0,1] for final layer return x @@ -329,6 +329,9 @@ def train(args): kernel_sizes = [int(k) for k in args.kernel_sizes.split(',')] if len(kernel_sizes) == 1: kernel_sizes = kernel_sizes * args.num_layers + else: + # When multiple kernel sizes provided, derive num_layers from list length + args.num_layers = len(kernel_sizes) # Create model model = CNNv2(kernel_sizes=kernel_sizes, num_layers=args.num_layers).to(device) @@ -397,6 +400,25 @@ def train(args): }, checkpoint_path) print(f" → Saved checkpoint: {checkpoint_path}") + # Always save final checkpoint + print() # Newline after training + final_checkpoint = Path(args.checkpoint_dir) / f"checkpoint_epoch_{args.epochs}.pth" + final_checkpoint.parent.mkdir(parents=True, exist_ok=True) + torch.save({ + 'epoch': args.epochs, + 'model_state_dict': model.state_dict(), + 'optimizer_state_dict': optimizer.state_dict(), + 'loss': avg_loss, + 'config': { + 'kernel_sizes': kernel_sizes, + 'num_layers': args.num_layers, + 'mip_level': args.mip_level, + 'grayscale_loss': args.grayscale_loss, + 'features': ['p0', 'p1', 'p2', 'p3', 'uv.x', 'uv.y', 'sin20_y', 'bias'] + } + }, final_checkpoint) + print(f" → Saved final checkpoint: {final_checkpoint}") + print(f"\nTraining complete! Total time: {time.time() - start_time:.1f}s") return model |
