summaryrefslogtreecommitdiff
path: root/tools
diff options
context:
space:
mode:
Diffstat (limited to 'tools')
-rw-r--r--tools/cnn_test.cc72
-rw-r--r--tools/cnn_v2_test/index.html72
2 files changed, 128 insertions, 16 deletions
diff --git a/tools/cnn_test.cc b/tools/cnn_test.cc
index 3fad2ff..c504c3d 100644
--- a/tools/cnn_test.cc
+++ b/tools/cnn_test.cc
@@ -46,6 +46,8 @@ struct Args {
int num_layers = 3; // Default to 3 layers
bool debug_hex = false; // Print first 8 pixels as hex
int cnn_version = 1; // 1=CNNEffect, 2=CNNv2Effect
+ const char* weights_path = nullptr; // Optional .bin weights file
+ bool cnn_version_explicit = false; // Track if --cnn-version was explicitly set
};
// Parse command-line arguments
@@ -87,10 +89,13 @@ static bool parse_args(int argc, char** argv, Args* args) {
args->debug_hex = true;
} else if (strcmp(argv[i], "--cnn-version") == 0 && i + 1 < argc) {
args->cnn_version = atoi(argv[++i]);
+ args->cnn_version_explicit = true;
if (args->cnn_version < 1 || args->cnn_version > 2) {
fprintf(stderr, "Error: cnn-version must be 1 or 2\n");
return false;
}
+ } else if (strcmp(argv[i], "--weights") == 0 && i + 1 < argc) {
+ args->weights_path = argv[++i];
} else if (strcmp(argv[i], "--help") == 0) {
return false;
} else {
@@ -99,6 +104,21 @@ static bool parse_args(int argc, char** argv, Args* args) {
}
}
+ // Force CNN v2 when --weights is specified
+ if (args->weights_path) {
+ if (args->cnn_version_explicit && args->cnn_version != 2) {
+ fprintf(stderr, "WARNING: --cnn-version %d ignored (--weights forces CNN v2)\n",
+ args->cnn_version);
+ }
+ args->cnn_version = 2;
+
+ // Warn if --layers was specified (binary file config takes precedence)
+ if (args->num_layers != 3) { // 3 is the default
+ fprintf(stderr, "WARNING: --layers %d ignored (--weights loads layer config from .bin)\n",
+ args->num_layers);
+ }
+ }
+
return true;
}
@@ -108,10 +128,11 @@ static void print_usage(const char* prog) {
fprintf(stderr, "\nOPTIONS:\n");
fprintf(stderr, " --blend F Final blend amount (0.0-1.0, default: 1.0)\n");
fprintf(stderr, " --format ppm|png Output format (default: png)\n");
- fprintf(stderr, " --layers N Number of CNN layers (1-10, default: 3)\n");
+ fprintf(stderr, " --layers N Number of CNN layers (1-10, default: 3, ignored with --weights)\n");
fprintf(stderr, " --save-intermediates DIR Save intermediate layers to directory\n");
fprintf(stderr, " --debug-hex Print first 8 pixels as hex (debug)\n");
- fprintf(stderr, " --cnn-version N CNN version: 1 (default) or 2\n");
+ fprintf(stderr, " --cnn-version N CNN version: 1 (default) or 2 (ignored with --weights)\n");
+ fprintf(stderr, " --weights PATH Load weights from .bin (forces CNN v2, overrides layer config)\n");
fprintf(stderr, " --help Show this help\n");
}
@@ -586,10 +607,38 @@ static bool process_cnn_v2(WGPUDevice device, WGPUQueue queue,
int width, int height, const Args& args) {
printf("Using CNN v2 (storage buffer architecture)\n");
- // Load weights
+ // Load weights (from file or asset system)
size_t weights_size = 0;
- const uint8_t* weights_data =
- (const uint8_t*)GetAsset(AssetId::ASSET_WEIGHTS_CNN_V2, &weights_size);
+ const uint8_t* weights_data = nullptr;
+ std::vector<uint8_t> file_weights; // For file-based loading
+
+ if (args.weights_path) {
+ // Load from file
+ printf("Loading weights from '%s'...\n", args.weights_path);
+ FILE* f = fopen(args.weights_path, "rb");
+ if (!f) {
+ fprintf(stderr, "Error: failed to open weights file '%s'\n", args.weights_path);
+ return false;
+ }
+
+ fseek(f, 0, SEEK_END);
+ weights_size = ftell(f);
+ fseek(f, 0, SEEK_SET);
+
+ file_weights.resize(weights_size);
+ size_t read = fread(file_weights.data(), 1, weights_size, f);
+ fclose(f);
+
+ if (read != weights_size) {
+ fprintf(stderr, "Error: failed to read weights file\n");
+ return false;
+ }
+
+ weights_data = file_weights.data();
+ } else {
+ // Load from asset system
+ weights_data = (const uint8_t*)GetAsset(AssetId::ASSET_WEIGHTS_CNN_V2, &weights_size);
+ }
if (!weights_data || weights_size < 20) {
fprintf(stderr, "Error: CNN v2 weights not available\n");
@@ -635,15 +684,20 @@ static bool process_cnn_v2(WGPUDevice device, WGPUQueue queue,
info.out_channels, info.weight_count);
}
- // Create weights storage buffer
+ // Create weights storage buffer (skip header + layer info, upload only weights)
+ size_t header_size = 20; // 5 u32
+ size_t layer_info_size = 20 * layer_info.size(); // 5 u32 per layer
+ size_t weights_offset = header_size + layer_info_size;
+ size_t weights_only_size = weights_size - weights_offset;
+
WGPUBufferDescriptor weights_buffer_desc = {};
- weights_buffer_desc.size = weights_size;
+ weights_buffer_desc.size = weights_only_size;
weights_buffer_desc.usage = WGPUBufferUsage_Storage | WGPUBufferUsage_CopyDst;
weights_buffer_desc.mappedAtCreation = false;
WGPUBuffer weights_buffer =
wgpuDeviceCreateBuffer(device, &weights_buffer_desc);
- wgpuQueueWriteBuffer(queue, weights_buffer, 0, weights_data, weights_size);
+ wgpuQueueWriteBuffer(queue, weights_buffer, 0, weights_data + weights_offset, weights_only_size);
// Create input view
const WGPUTextureViewDescriptor view_desc = {
@@ -1002,7 +1056,7 @@ static bool process_cnn_v2(WGPUDevice device, WGPUQueue queue,
layer_bg_entries[3].binding = 3;
layer_bg_entries[3].buffer = weights_buffer;
- layer_bg_entries[3].size = weights_size;
+ layer_bg_entries[3].size = weights_only_size;
layer_bg_entries[4].binding = 4;
layer_bg_entries[4].buffer = layer_params_buffers[i];
diff --git a/tools/cnn_v2_test/index.html b/tools/cnn_v2_test/index.html
index ca89fb4..2ec934d 100644
--- a/tools/cnn_v2_test/index.html
+++ b/tools/cnn_v2_test/index.html
@@ -543,12 +543,10 @@ fn main(@builtin(global_invocation_id) id: vec3<u32>) {
}
}
- if (is_output) {
- output[c] = clamp(sum, 0.0, 1.0);
- } else if (params.is_layer_0 != 0u) {
- output[c] = clamp(sum, 0.0, 1.0); // Layer 0: clamp [0,1]
+ if (is_output || params.is_layer_0 != 0u) {
+ output[c] = 1.0 / (1.0 + exp(-sum)); // Sigmoid [0,1]
} else {
- output[c] = max(0.0, sum); // Middle layers: ReLU
+ output[c] = max(0.0, sum); // ReLU
}
}
@@ -1395,6 +1393,7 @@ class CNNTester {
const label = `Layer ${i - 1}`;
html += `<button onclick="tester.visualizeLayer(${i})" id="layerBtn${i}">${label}</button>`;
}
+ html += `<button onclick="tester.saveCompositedLayer()" style="margin-left: 20px; background: #28a745;">Save Composited</button>`;
html += '</div>';
html += '<div class="layer-grid" id="layerGrid"></div>';
@@ -1526,7 +1525,7 @@ class CNNTester {
continue;
}
- const vizScale = layerIdx === 0 ? 1.0 : 0.5; // Static: 1.0, CNN layers: 0.5 (4 channels [0,1])
+ const vizScale = 1.0; // Always 1.0, shader clamps to [0,1]
const paramsBuffer = this.device.createBuffer({
size: 8,
usage: GPUBufferUsage.UNIFORM | GPUBufferUsage.COPY_DST
@@ -1618,7 +1617,8 @@ class CNNTester {
const layerTex = this.layerOutputs[layerIdx];
if (!layerTex) return;
- const vizScale = layerIdx === 0 ? 1.0 : 0.5;
+ // Always 1.0, shader clamps to [0,1] - show exact layer values
+ const vizScale = 1.0;
const actualChannel = channelOffset + this.selectedChannel;
const paramsBuffer = this.device.createBuffer({
@@ -1836,6 +1836,64 @@ class CNNTester {
this.setStatus(`Save failed: ${err.message}`, true);
}
}
+
+ async saveCompositedLayer() {
+ if (!this.currentLayerIdx) {
+ this.log('No layer selected for compositing', 'error');
+ return;
+ }
+
+ try {
+ const canvases = [];
+ for (let i = 0; i < 4; i++) {
+ const canvas = document.getElementById(`layerCanvas${i}`);
+ if (!canvas) {
+ this.log(`Canvas layerCanvas${i} not found`, 'error');
+ return;
+ }
+ canvases.push(canvas);
+ }
+
+ const width = canvases[0].width;
+ const height = canvases[0].height;
+ const compositedWidth = width * 4;
+
+ // Create composited canvas
+ const compositedCanvas = document.createElement('canvas');
+ compositedCanvas.width = compositedWidth;
+ compositedCanvas.height = height;
+ const ctx = compositedCanvas.getContext('2d');
+
+ // Composite horizontally
+ for (let i = 0; i < 4; i++) {
+ ctx.drawImage(canvases[i], i * width, 0);
+ }
+
+ // Convert to grayscale
+ const imageData = ctx.getImageData(0, 0, compositedWidth, height);
+ const pixels = imageData.data;
+ for (let i = 0; i < pixels.length; i += 4) {
+ const gray = 0.299 * pixels[i] + 0.587 * pixels[i + 1] + 0.114 * pixels[i + 2];
+ pixels[i] = pixels[i + 1] = pixels[i + 2] = gray;
+ }
+ ctx.putImageData(imageData, 0, 0);
+
+ // Save as PNG
+ const blob = await new Promise(resolve => compositedCanvas.toBlob(resolve, 'image/png'));
+ const url = URL.createObjectURL(blob);
+ const a = document.createElement('a');
+ a.href = url;
+ a.download = `composited_layer${this.currentLayerIdx - 1}_${compositedWidth}x${height}.png`;
+ a.click();
+ URL.revokeObjectURL(url);
+
+ this.log(`Saved composited layer: ${a.download}`);
+ this.setStatus(`Saved: ${a.download}`);
+ } catch (err) {
+ this.log(`Failed to save composited layer: ${err.message}`, 'error');
+ this.setStatus(`Compositing failed: ${err.message}`, true);
+ }
+ }
}
const tester = new CNNTester();