diff options
Diffstat (limited to 'tools/spectral_editor/script.js')
| -rw-r--r-- | tools/spectral_editor/script.js | 1774 |
1 files changed, 1774 insertions, 0 deletions
diff --git a/tools/spectral_editor/script.js b/tools/spectral_editor/script.js new file mode 100644 index 0000000..6c6dd49 --- /dev/null +++ b/tools/spectral_editor/script.js @@ -0,0 +1,1774 @@ +// Spectral Brush Editor - Main Script +// Implements Bezier curve editing, spectrogram rendering, and audio playback + +// ============================================================================ +// State Management +// ============================================================================ + +const SAMPLE_RATE = 32000; +const DCT_SIZE = 512; + +// Frequency range for log-scale display +const FREQ_MIN = 20.0; // 20 Hz (lowest audible bass) +const FREQ_MAX = 16000.0; // 16 kHz (Nyquist for 32kHz sample rate) +const USE_LOG_SCALE = true; // Enable logarithmic frequency axis + +const state = { + // Reference audio data + referenceSpectrogram: null, // Float32Array or null + referenceDctSize: DCT_SIZE, + referenceNumFrames: 0, + + // Procedural curves + curves: [], // Array of {id, controlPoints: [{frame, freqHz, amplitude}], profile: {type, param1, param2}} + nextCurveId: 0, + selectedCurveId: null, + selectedControlPointIdx: null, + + // Canvas state + canvasWidth: 0, + canvasHeight: 0, + pixelsPerFrame: 2.0, // Zoom level (pixels per frame) + pixelsPerBin: 1.0, // Vertical scale (pixels per frequency bin) + + // Audio playback + audioContext: null, + isPlaying: false, + currentSource: null, + currentGainNode: null, // Keep reference to gain node for live volume updates + playbackVolume: 1.0, // Global volume for playback (0.0-1.0, increased from 0.7) + referenceOpacity: 0.5, // Opacity for reference spectrogram (0.0-1.0, increased from 0.3) + + // Playhead indicator + playbackStartTime: null, + playbackDuration: 0, + playbackCurrentFrame: 0, + + // Mouse hover state + mouseX: -1, + mouseY: -1, + mouseFrame: 0, + mouseFreq: 0, + + // Undo/Redo + history: [], + historyIndex: -1, + maxHistorySize: 50 +}; + +// ============================================================================ +// Initialization +// ============================================================================ + +document.addEventListener('DOMContentLoaded', () => { + initCanvas(); + initUI(); + initKeyboardShortcuts(); + initAudioContext(); + + console.log('Spectral Brush Editor initialized'); +}); + +function initCanvas() { + const canvas = document.getElementById('spectrogramCanvas'); + const container = canvas.parentElement; + + // Set canvas size to match container + const resizeCanvas = () => { + canvas.width = container.clientWidth; + canvas.height = container.clientHeight; + state.canvasWidth = canvas.width; + state.canvasHeight = canvas.height; + render(); + }; + + window.addEventListener('resize', resizeCanvas); + resizeCanvas(); + + // Mouse event handlers + canvas.addEventListener('mousedown', onCanvasMouseDown); + canvas.addEventListener('mousemove', onCanvasMouseMove); + canvas.addEventListener('mouseup', onCanvasMouseUp); + canvas.addEventListener('contextmenu', onCanvasRightClick); + + // Mouse hover handlers (for crosshair) + canvas.addEventListener('mousemove', onCanvasHover); + canvas.addEventListener('mouseleave', onCanvasLeave); +} + +function initUI() { + // File loading + document.getElementById('loadWavBtn').addEventListener('click', () => { + document.getElementById('fileInput').click(); + }); + + document.getElementById('fileInput').addEventListener('change', onFileSelected); + + // Curve management + document.getElementById('addCurveBtn').addEventListener('click', addCurve); + document.getElementById('deleteCurveBtn').addEventListener('click', deleteSelectedCurve); + document.getElementById('curveSelect').addEventListener('change', onCurveSelected); + + // Profile controls + document.getElementById('profileType').addEventListener('change', onProfileChanged); + document.getElementById('sigmaSlider').addEventListener('input', onSigmaChanged); + document.getElementById('sigmaValue').addEventListener('input', onSigmaValueChanged); + document.getElementById('curveVolumeSlider').addEventListener('input', onCurveVolumeChanged); + document.getElementById('curveVolumeValue').addEventListener('input', onCurveVolumeValueChanged); + + // Display controls + document.getElementById('refOpacitySlider').addEventListener('input', onRefOpacityChanged); + document.getElementById('refOpacityValue').addEventListener('input', onRefOpacityValueChanged); + + // Playback controls + document.getElementById('volumeSlider').addEventListener('input', onVolumeChanged); + document.getElementById('volumeValue').addEventListener('input', onVolumeValueChanged); + document.getElementById('playProceduralBtn').addEventListener('click', () => playAudio('procedural')); + document.getElementById('playOriginalBtn').addEventListener('click', () => playAudio('original')); + document.getElementById('stopBtn').addEventListener('click', stopAudio); + + // Action buttons + document.getElementById('undoBtn').addEventListener('click', undo); + document.getElementById('redoBtn').addEventListener('click', redo); + document.getElementById('saveParamsBtn').addEventListener('click', saveProceduralParams); + document.getElementById('generateCodeBtn').addEventListener('click', generateCppCode); + document.getElementById('helpBtn').addEventListener('click', showHelp); + + // Help modal + document.getElementById('closeHelpModal').addEventListener('click', hideHelp); + document.getElementById('helpModal').addEventListener('click', (e) => { + if (e.target.id === 'helpModal') hideHelp(); + }); +} + +function initKeyboardShortcuts() { + document.addEventListener('keydown', (e) => { + // Playback shortcuts + if (e.key === '1') { + playAudio('procedural'); + return; + } + if (e.key === '2') { + playAudio('original'); + return; + } + if (e.key === ' ') { + e.preventDefault(); + stopAudio(); + return; + } + + // Edit shortcuts + if (e.key === 'Delete') { + deleteSelectedControlPoint(); + return; + } + if (e.key === 'Escape') { + deselectAll(); + return; + } + + // Undo/Redo + if (e.ctrlKey && e.shiftKey && e.key === 'Z') { + e.preventDefault(); + redo(); + return; + } + if (e.ctrlKey && e.key === 'z') { + e.preventDefault(); + undo(); + return; + } + + // File operations + if (e.ctrlKey && e.shiftKey && e.key === 'S') { + e.preventDefault(); + generateCppCode(); + return; + } + if (e.ctrlKey && e.key === 's') { + e.preventDefault(); + saveProceduralParams(); + return; + } + if (e.ctrlKey && e.key === 'o') { + e.preventDefault(); + document.getElementById('fileInput').click(); + return; + } + + // Help + if (e.key === '?') { + showHelp(); + return; + } + }); +} + +function initAudioContext() { + try { + state.audioContext = new (window.AudioContext || window.webkitAudioContext)({ + sampleRate: SAMPLE_RATE + }); + console.log('Audio context initialized:', state.audioContext.sampleRate, 'Hz'); + } catch (error) { + console.error('Failed to initialize audio context:', error); + alert('Audio playback unavailable. Your browser may not support Web Audio API.'); + } +} + +// ============================================================================ +// File Loading +// ============================================================================ + +function onFileSelected(e) { + const file = e.target.files[0]; + if (!file) return; + + // Check if there are unsaved curves + if (state.curves.length > 0) { + const confirmLoad = confirm( + 'You have unsaved curves. Loading a new file will reset all curves.\n\n' + + 'Do you want to save your work first?\n\n' + + 'Click "OK" to save, or "Cancel" to discard and continue loading.' + ); + + if (confirmLoad) { + // User wants to save first + saveProceduralParams(); + // After saving, ask again if they want to proceed + const proceedLoad = confirm('File saved. Proceed with loading new file?'); + if (!proceedLoad) { + // User changed their mind, reset file input + e.target.value = ''; + return; + } + } + } + + const fileName = file.name; + const fileExt = fileName.split('.').pop().toLowerCase(); + + if (fileExt === 'wav') { + loadWavFile(file); + } else if (fileExt === 'spec') { + loadSpecFile(file); + } else { + alert('Unsupported file format. Please load a .wav or .spec file.'); + } +} + +function loadWavFile(file) { + const reader = new FileReader(); + reader.onload = (e) => { + const arrayBuffer = e.target.result; + state.audioContext.decodeAudioData(arrayBuffer, (audioBuffer) => { + console.log('Decoded WAV:', audioBuffer.length, 'samples,', audioBuffer.numberOfChannels, 'channels'); + + // Convert to spectrogram (simplified: just use first channel) + const audioData = audioBuffer.getChannelData(0); + const spectrogram = audioToSpectrogram(audioData); + + state.referenceSpectrogram = spectrogram.data; + state.referenceDctSize = spectrogram.dctSize; + state.referenceNumFrames = spectrogram.numFrames; + + onReferenceLoaded(file.name); + }, (error) => { + console.error('Failed to decode WAV:', error); + alert('Failed to decode WAV file. Make sure it is a valid audio file.'); + }); + }; + reader.readAsArrayBuffer(file); +} + +function loadSpecFile(file) { + const reader = new FileReader(); + reader.onload = (e) => { + const arrayBuffer = e.target.result; + const spec = parseSpecFile(arrayBuffer); + + if (!spec) { + alert('Failed to parse .spec file. Invalid format.'); + return; + } + + state.referenceSpectrogram = spec.data; + state.referenceDctSize = spec.dctSize; + state.referenceNumFrames = spec.numFrames; + + onReferenceLoaded(file.name); + }; + reader.readAsArrayBuffer(file); +} + +function parseSpecFile(arrayBuffer) { + const view = new DataView(arrayBuffer); + let offset = 0; + + // Read header: "SPEC" magic (4 bytes) + const magic = String.fromCharCode( + view.getUint8(offset++), + view.getUint8(offset++), + view.getUint8(offset++), + view.getUint8(offset++) + ); + + if (magic !== 'SPEC') { + console.error('Invalid .spec file: wrong magic', magic); + return null; + } + + // Read version (uint32) + const version = view.getUint32(offset, true); + offset += 4; + + // Read dct_size (uint32) + const dctSize = view.getUint32(offset, true); + offset += 4; + + // Read num_frames (uint32) + const numFrames = view.getUint32(offset, true); + offset += 4; + + console.log('.spec header:', {version, dctSize, numFrames}); + + // Read spectral data (float32 array) + const dataLength = dctSize * numFrames; + const data = new Float32Array(dataLength); + + for (let i = 0; i < dataLength; i++) { + data[i] = view.getFloat32(offset, true); + offset += 4; + } + + return {dctSize, numFrames, data}; +} + +function audioToSpectrogram(audioData) { + // Simplified STFT: divide audio into frames and apply DCT + // Frame overlap: 50% (hop size = DCT_SIZE / 2) + const hopSize = DCT_SIZE / 2; + const numFrames = Math.floor((audioData.length - DCT_SIZE) / hopSize) + 1; + + const spectrogram = new Float32Array(DCT_SIZE * numFrames); + const window = hanningWindowArray; + + for (let frameIdx = 0; frameIdx < numFrames; frameIdx++) { + const frameStart = frameIdx * hopSize; + const frame = new Float32Array(DCT_SIZE); + + // Extract windowed frame + for (let i = 0; i < DCT_SIZE; i++) { + if (frameStart + i < audioData.length) { + frame[i] = audioData[frameStart + i] * window[i]; + } + } + + // Compute DCT (forward transform) + const dctCoeffs = javascript_dct_512(frame); + + // Store in spectrogram + for (let b = 0; b < DCT_SIZE; b++) { + spectrogram[frameIdx * DCT_SIZE + b] = dctCoeffs[b]; + } + } + + return {dctSize: DCT_SIZE, numFrames, data: spectrogram}; +} + +// Forward DCT (not in dct.js, add here) +// Fast O(N log N) DCT using FFT (delegates to dct.js implementation) +function javascript_dct_512(input) { + return javascript_dct_512_fft(input); +} + +function onReferenceLoaded(fileName) { + console.log('Reference loaded:', fileName); + document.getElementById('fileInfo').textContent = fileName; + document.getElementById('canvasOverlay').classList.add('hidden'); + document.getElementById('playOriginalBtn').disabled = false; + + // Reset curves when loading new file + state.curves = []; + state.nextCurveId = 0; + state.selectedCurveId = null; + state.selectedControlPointIdx = null; + + // Clear history + state.history = []; + state.historyIndex = -1; + + // Reset mouse to frame 0 + state.mouseFrame = 0; + + // Adjust zoom to fit + state.pixelsPerFrame = Math.max(1.0, state.canvasWidth / state.referenceNumFrames); + + updateCurveUI(); + updateUndoRedoButtons(); + render(); + drawSpectrumViewer(); // Show initial spectrum +} + +// ============================================================================ +// Curve Management +// ============================================================================ + +function addCurve() { + // Generate a unique color for this curve + const colors = [ + '#0e639c', // Blue + '#00aa00', // Green + '#cc5500', // Orange + '#aa00aa', // Purple + '#00aaaa', // Cyan + '#aa5500', // Brown + '#ff69b4', // Pink + '#ffd700', // Gold + ]; + const color = colors[state.curves.length % colors.length]; + + const curve = { + id: state.nextCurveId++, + controlPoints: [], // Empty initially, user will place points + profile: { + type: 'gaussian', + param1: 30.0, // sigma + param2: 0.0 + }, + color: color, + volume: 1.0 // Per-curve volume multiplier (0.0-1.0) + }; + + state.curves.push(curve); + state.selectedCurveId = curve.id; + + saveHistoryState('Add curve'); + updateCurveUI(); + render(); +} + +function deleteSelectedCurve() { + if (state.selectedCurveId === null) return; + + const idx = state.curves.findIndex(c => c.id === state.selectedCurveId); + if (idx >= 0) { + state.curves.splice(idx, 1); + state.selectedCurveId = null; + state.selectedControlPointIdx = null; + + saveHistoryState('Delete curve'); + updateCurveUI(); + render(); + } +} + +function onCurveSelected(e) { + const curveId = parseInt(e.target.value); + state.selectedCurveId = curveId >= 0 ? curveId : null; + state.selectedControlPointIdx = null; + + updateCurveUI(); + render(); +} + +function updateCurveUI() { + // Update curve list (toolbar) + const curveList = document.getElementById('curveList'); + curveList.innerHTML = ''; + + state.curves.forEach(curve => { + const div = document.createElement('div'); + div.className = 'curve-item'; + if (curve.id === state.selectedCurveId) { + div.classList.add('selected'); + } + + // Add color indicator + const colorDot = document.createElement('span'); + colorDot.style.display = 'inline-block'; + colorDot.style.width = '12px'; + colorDot.style.height = '12px'; + colorDot.style.borderRadius = '50%'; + colorDot.style.backgroundColor = curve.color || '#0e639c'; + colorDot.style.marginRight = '8px'; + colorDot.style.verticalAlign = 'middle'; + + div.appendChild(colorDot); + div.appendChild(document.createTextNode(`Curve ${curve.id} (${curve.controlPoints.length} points)`)); + + div.addEventListener('click', () => { + state.selectedCurveId = curve.id; + state.selectedControlPointIdx = null; + updateCurveUI(); + updatePointInfo(); + render(); + }); + curveList.appendChild(div); + }); + + // Update curve select dropdown + const curveSelect = document.getElementById('curveSelect'); + curveSelect.innerHTML = ''; + + if (state.curves.length === 0) { + const opt = document.createElement('option'); + opt.value = -1; + opt.textContent = 'No curves'; + curveSelect.appendChild(opt); + } else { + state.curves.forEach(curve => { + const opt = document.createElement('option'); + opt.value = curve.id; + opt.textContent = `Curve ${curve.id}`; + opt.selected = curve.id === state.selectedCurveId; + curveSelect.appendChild(opt); + }); + } + + // Update delete button state + document.getElementById('deleteCurveBtn').disabled = state.selectedCurveId === null; + + // Update profile controls + if (state.selectedCurveId !== null) { + const curve = state.curves.find(c => c.id === state.selectedCurveId); + if (curve) { + document.getElementById('profileType').value = curve.profile.type; + document.getElementById('sigmaSlider').value = curve.profile.param1; + document.getElementById('sigmaValue').value = curve.profile.param1; + + // Update curve volume slider + const volumePercent = Math.round(curve.volume * 100); + document.getElementById('curveVolumeSlider').value = volumePercent; + document.getElementById('curveVolumeValue').value = volumePercent; + } + } + + // Update point info panel + updatePointInfo(); +} + +function updatePointInfo() { + const frameEl = document.getElementById('pointFrame'); + const freqEl = document.getElementById('pointFreq'); + const ampEl = document.getElementById('pointAmp'); + + if (state.selectedCurveId === null || state.selectedControlPointIdx === null) { + // No point selected + frameEl.textContent = '-'; + freqEl.textContent = '-'; + ampEl.textContent = '-'; + return; + } + + const curve = state.curves.find(c => c.id === state.selectedCurveId); + if (!curve || state.selectedControlPointIdx >= curve.controlPoints.length) { + frameEl.textContent = '-'; + freqEl.textContent = '-'; + ampEl.textContent = '-'; + return; + } + + const point = curve.controlPoints[state.selectedControlPointIdx]; + frameEl.textContent = point.frame.toFixed(0); + freqEl.textContent = point.freqHz.toFixed(1) + ' Hz'; + ampEl.textContent = point.amplitude.toFixed(3); +} + +// ============================================================================ +// Profile Controls +// ============================================================================ + +function onProfileChanged(e) { + if (state.selectedCurveId === null) return; + + const curve = state.curves.find(c => c.id === state.selectedCurveId); + if (!curve) return; + + curve.profile.type = e.target.value; + + // Update label based on profile type + const label = document.getElementById('sigmaLabel'); + if (curve.profile.type === 'gaussian') { + label.textContent = 'Sigma:'; + } else if (curve.profile.type === 'decaying_sinusoid') { + label.textContent = 'Decay:'; + } else if (curve.profile.type === 'noise') { + label.textContent = 'Decay:'; // Changed from 'Amplitude:' to 'Decay:' + } + + saveHistoryState('Change profile'); + render(); +} + +function onSigmaChanged(e) { + if (state.selectedCurveId === null) return; + + const curve = state.curves.find(c => c.id === state.selectedCurveId); + if (!curve) return; + + curve.profile.param1 = parseFloat(e.target.value); + document.getElementById('sigmaValue').value = curve.profile.param1; + + render(); +} + +function onSigmaValueChanged(e) { + if (state.selectedCurveId === null) return; + + const curve = state.curves.find(c => c.id === state.selectedCurveId); + if (!curve) return; + + curve.profile.param1 = parseFloat(e.target.value); + document.getElementById('sigmaSlider').value = curve.profile.param1; + + render(); +} + +function onRefOpacityChanged(e) { + state.referenceOpacity = parseFloat(e.target.value) / 100.0; // Convert 0-100 to 0.0-1.0 + document.getElementById('refOpacityValue').value = e.target.value; + render(); +} + +function onRefOpacityValueChanged(e) { + state.referenceOpacity = parseFloat(e.target.value) / 100.0; + document.getElementById('refOpacitySlider').value = e.target.value; + render(); +} + +function onVolumeChanged(e) { + state.playbackVolume = parseFloat(e.target.value) / 100.0; // Convert 0-100 to 0.0-1.0 + document.getElementById('volumeValue').value = e.target.value; + + // Update gain node if audio is currently playing + if (state.currentGainNode) { + state.currentGainNode.gain.value = state.playbackVolume; + } +} + +function onVolumeValueChanged(e) { + state.playbackVolume = parseFloat(e.target.value) / 100.0; + document.getElementById('volumeSlider').value = e.target.value; + + // Update gain node if audio is currently playing + if (state.currentGainNode) { + state.currentGainNode.gain.value = state.playbackVolume; + } +} + +function onCurveVolumeChanged(e) { + if (state.selectedCurveId === null) return; + + const curve = state.curves.find(c => c.id === state.selectedCurveId); + if (!curve) return; + + curve.volume = parseFloat(e.target.value) / 100.0; // Convert 0-100 to 0.0-1.0 + document.getElementById('curveVolumeValue').value = e.target.value; + + render(); +} + +function onCurveVolumeValueChanged(e) { + if (state.selectedCurveId === null) return; + + const curve = state.curves.find(c => c.id === state.selectedCurveId); + if (!curve) return; + + curve.volume = parseFloat(e.target.value) / 100.0; + document.getElementById('curveVolumeSlider').value = e.target.value; + + render(); +} + +// ============================================================================ +// Canvas Interaction +// ============================================================================ + +let isDragging = false; +let dragStartX = 0; +let dragStartY = 0; + +function onCanvasMouseDown(e) { + const rect = e.target.getBoundingClientRect(); + const x = e.clientX - rect.left; + const y = e.clientY - rect.top; + + // Check if clicking on existing control point + const clickedPoint = findControlPointAt(x, y); + + if (clickedPoint) { + // Start dragging existing point + state.selectedCurveId = clickedPoint.curveId; + state.selectedControlPointIdx = clickedPoint.pointIdx; + isDragging = true; + dragStartX = x; + dragStartY = y; + updateCurveUI(); + updatePointInfo(); + render(); + } else if (state.selectedCurveId !== null) { + // Place new control point + const curve = state.curves.find(c => c.id === state.selectedCurveId); + if (curve) { + const point = screenToSpectrogram(x, y); + curve.controlPoints.push(point); + + // Sort by frame + curve.controlPoints.sort((a, b) => a.frame - b.frame); + + saveHistoryState('Add control point'); + updateCurveUI(); + updatePointInfo(); + render(); + } + } +} + +function onCanvasMouseMove(e) { + if (!isDragging) return; + if (state.selectedCurveId === null || state.selectedControlPointIdx === null) return; + + const rect = e.target.getBoundingClientRect(); + const x = e.clientX - rect.left; + const y = e.clientY - rect.top; + + const curve = state.curves.find(c => c.id === state.selectedCurveId); + if (!curve) return; + + const point = curve.controlPoints[state.selectedControlPointIdx]; + if (!point) return; + + // Update point position + const newPoint = screenToSpectrogram(x, y); + point.frame = newPoint.frame; + point.freqHz = newPoint.freqHz; + point.amplitude = newPoint.amplitude; + + // Re-sort by frame + curve.controlPoints.sort((a, b) => a.frame - b.frame); + + // Update point info panel in real-time + updatePointInfo(); + + render(); +} + +function onCanvasMouseUp(e) { + if (isDragging) { + isDragging = false; + saveHistoryState('Move control point'); + } +} + +function onCanvasRightClick(e) { + e.preventDefault(); + + const rect = e.target.getBoundingClientRect(); + const x = e.clientX - rect.left; + const y = e.clientY - rect.top; + + const clickedPoint = findControlPointAt(x, y); + if (clickedPoint) { + const curve = state.curves.find(c => c.id === clickedPoint.curveId); + if (curve) { + curve.controlPoints.splice(clickedPoint.pointIdx, 1); + state.selectedControlPointIdx = null; + + saveHistoryState('Delete control point'); + updateCurveUI(); + render(); + } + } +} + +function findControlPointAt(screenX, screenY) { + const CLICK_RADIUS = 8; // pixels + + for (const curve of state.curves) { + for (let i = 0; i < curve.controlPoints.length; i++) { + const point = curve.controlPoints[i]; + const screenPos = spectrogramToScreen(point.frame, point.freqHz); + + const dx = screenX - screenPos.x; + const dy = screenY - screenPos.y; + const dist = Math.sqrt(dx * dx + dy * dy); + + if (dist <= CLICK_RADIUS) { + return {curveId: curve.id, pointIdx: i}; + } + } + } + + return null; +} + +function deleteSelectedControlPoint() { + if (state.selectedCurveId === null || state.selectedControlPointIdx === null) return; + + const curve = state.curves.find(c => c.id === state.selectedCurveId); + if (curve && state.selectedControlPointIdx < curve.controlPoints.length) { + curve.controlPoints.splice(state.selectedControlPointIdx, 1); + state.selectedControlPointIdx = null; + + saveHistoryState('Delete control point'); + updateCurveUI(); + render(); + } +} + +function deselectAll() { + state.selectedCurveId = null; + state.selectedControlPointIdx = null; + updateCurveUI(); + updatePointInfo(); + render(); +} + +function onCanvasHover(e) { + const rect = e.target.getBoundingClientRect(); + state.mouseX = e.clientX - rect.left; + state.mouseY = e.clientY - rect.top; + + // Convert to spectrogram coordinates + const coords = screenToSpectrogram(state.mouseX, state.mouseY); + state.mouseFrame = Math.floor(coords.frame); + state.mouseFreq = coords.freqHz; + + // Only redraw if not dragging (avoid slowdown during drag) + if (!isDragging) { + render(); + drawSpectrumViewer(); // Update spectrum viewer with frame under mouse + } +} + +function onCanvasLeave(e) { + state.mouseX = -1; + state.mouseY = -1; + render(); +} + +// ============================================================================ +// Coordinate Conversion +// ============================================================================ + +function screenToSpectrogram(screenX, screenY) { + const frame = Math.round(screenX / state.pixelsPerFrame); + + let freqHz; + if (USE_LOG_SCALE) { + // Logarithmic frequency mapping + const logMin = Math.log10(FREQ_MIN); + const logMax = Math.log10(FREQ_MAX); + const normalizedY = 1.0 - (screenY / state.canvasHeight); // Flip Y (0 at bottom, 1 at top) + const logFreq = logMin + normalizedY * (logMax - logMin); + freqHz = Math.pow(10, logFreq); + } else { + // Linear frequency mapping (old behavior) + const bin = Math.round((state.canvasHeight - screenY) / state.pixelsPerBin); + freqHz = (bin / state.referenceDctSize) * (SAMPLE_RATE / 2); + } + + // Amplitude from Y position (normalized 0-1, top = 1.0, bottom = 0.0) + const amplitude = 1.0 - (screenY / state.canvasHeight); + + return { + frame: Math.max(0, frame), + freqHz: Math.max(FREQ_MIN, Math.min(FREQ_MAX, freqHz)), + amplitude: Math.max(0, Math.min(1, amplitude)) + }; +} + +function spectrogramToScreen(frame, freqHz) { + const x = frame * state.pixelsPerFrame; + + let y; + if (USE_LOG_SCALE) { + // Logarithmic frequency mapping + const logMin = Math.log10(FREQ_MIN); + const logMax = Math.log10(FREQ_MAX); + const clampedFreq = Math.max(FREQ_MIN, Math.min(FREQ_MAX, freqHz)); + const logFreq = Math.log10(clampedFreq); + const normalizedY = (logFreq - logMin) / (logMax - logMin); + y = state.canvasHeight * (1.0 - normalizedY); // Flip Y back to screen coords + } else { + // Linear frequency mapping (old behavior) + const bin = (freqHz / (SAMPLE_RATE / 2)) * state.referenceDctSize; + y = state.canvasHeight - (bin * state.pixelsPerBin); + } + + return {x, y}; +} + +// ============================================================================ +// Rendering (continued in next message due to length) +// ============================================================================ + +// ============================================================================ +// Rendering +// ============================================================================ + +function render() { + const canvas = document.getElementById('spectrogramCanvas'); + const ctx = canvas.getContext('2d'); + + // Clear canvas + ctx.fillStyle = '#1e1e1e'; + ctx.fillRect(0, 0, canvas.width, canvas.height); + + // Draw reference spectrogram (background) + if (state.referenceSpectrogram) { + drawReferenceSpectrogram(ctx); + } + + // Draw procedural spectrogram (foreground) + if (state.curves.length > 0) { + drawProceduralSpectrogram(ctx); + } + + // Draw frequency axis (log-scale grid and labels) + drawFrequencyAxis(ctx); + + // Draw playhead indicator + drawPlayhead(ctx); + + // Draw mouse crosshair and tooltip + drawCrosshair(ctx); + + // Draw control points + drawControlPoints(ctx); +} + +function drawPlayhead(ctx) { + if (!state.isPlaying || state.playbackCurrentFrame < 0) return; + + const x = state.playbackCurrentFrame * state.pixelsPerFrame; + + // Draw vertical line + ctx.strokeStyle = '#ff3333'; // Bright red + ctx.lineWidth = 2; + ctx.setLineDash([5, 3]); // Dashed line + ctx.beginPath(); + ctx.moveTo(x, 0); + ctx.lineTo(x, state.canvasHeight); + ctx.stroke(); + ctx.setLineDash([]); // Reset to solid line +} + +function drawCrosshair(ctx) { + if (state.mouseX < 0 || state.mouseY < 0) return; + + // Draw vertical line + ctx.strokeStyle = 'rgba(255, 255, 255, 0.3)'; + ctx.lineWidth = 1; + ctx.beginPath(); + ctx.moveTo(state.mouseX, 0); + ctx.lineTo(state.mouseX, state.canvasHeight); + ctx.stroke(); + + // Draw tooltip + const frameText = `Frame: ${state.mouseFrame}`; + const freqText = `Freq: ${state.mouseFreq.toFixed(1)} Hz`; + + ctx.font = '12px monospace'; + const frameWidth = ctx.measureText(frameText).width; + const freqWidth = ctx.measureText(freqText).width; + const maxWidth = Math.max(frameWidth, freqWidth); + + const tooltipX = state.mouseX + 10; + const tooltipY = state.mouseY - 40; + const tooltipWidth = maxWidth + 20; + const tooltipHeight = 40; + + // Background + ctx.fillStyle = 'rgba(0, 0, 0, 0.8)'; + ctx.fillRect(tooltipX, tooltipY, tooltipWidth, tooltipHeight); + + // Border + ctx.strokeStyle = 'rgba(255, 255, 255, 0.3)'; + ctx.lineWidth = 1; + ctx.strokeRect(tooltipX, tooltipY, tooltipWidth, tooltipHeight); + + // Text + ctx.fillStyle = '#ffffff'; + ctx.fillText(frameText, tooltipX + 10, tooltipY + 15); + ctx.fillText(freqText, tooltipX + 10, tooltipY + 30); +} + +function drawReferenceSpectrogram(ctx) { + // Create offscreen canvas for reference layer + const offscreen = document.createElement('canvas'); + offscreen.width = state.canvasWidth; + offscreen.height = state.canvasHeight; + const offscreenCtx = offscreen.getContext('2d'); + + const imgData = offscreenCtx.createImageData(state.canvasWidth, state.canvasHeight); + + // CORRECT MAPPING: Iterate over destination pixels → sample source bins + // This prevents gaps and overlaps + for (let screenY = 0; screenY < state.canvasHeight; screenY++) { + for (let screenX = 0; screenX < state.canvasWidth; screenX++) { + // Convert screen coordinates to spectrogram coordinates + const spectroCoords = screenToSpectrogram(screenX, screenY); + const frameIdx = Math.floor(spectroCoords.frame); + + // Convert freqHz back to bin + const bin = Math.round((spectroCoords.freqHz / (SAMPLE_RATE / 2)) * state.referenceDctSize); + + // Bounds check + if (frameIdx < 0 || frameIdx >= state.referenceNumFrames) continue; + if (bin < 0 || bin >= state.referenceDctSize) continue; + + // Sample spectrogram + const specValue = state.referenceSpectrogram[frameIdx * state.referenceDctSize + bin]; + + // Logarithmic intensity mapping (dB scale) + // Maps wide dynamic range to visible range + const amplitude = Math.abs(specValue); + let intensity = 0; + if (amplitude > 0.0001) { // Noise floor + const dB = 20.0 * Math.log10(amplitude); + const dB_min = -60.0; // Noise floor (-60 dB) + const dB_max = 40.0; // Peak (40 dB headroom) + const normalized = (dB - dB_min) / (dB_max - dB_min); + intensity = Math.floor(Math.max(0, Math.min(255, normalized * 255))); + } + + // Write pixel + const pixelIdx = (screenY * state.canvasWidth + screenX) * 4; + imgData.data[pixelIdx + 0] = intensity; // R + imgData.data[pixelIdx + 1] = intensity; // G + imgData.data[pixelIdx + 2] = intensity; // B + imgData.data[pixelIdx + 3] = 255; // A + } + } + + offscreenCtx.putImageData(imgData, 0, 0); + + // Draw offscreen canvas with proper alpha blending + ctx.globalAlpha = state.referenceOpacity; + ctx.drawImage(offscreen, 0, 0); + ctx.globalAlpha = 1.0; +} + +function drawProceduralSpectrogram(ctx) { + // Draw each curve separately with its own color and volume + const numFrames = state.referenceNumFrames || 100; + + state.curves.forEach(curve => { + if (curve.controlPoints.length === 0) return; + + // Create offscreen canvas for this curve + const offscreen = document.createElement('canvas'); + offscreen.width = state.canvasWidth; + offscreen.height = state.canvasHeight; + const offscreenCtx = offscreen.getContext('2d'); + + // Generate spectrogram for this curve only + const curveSpec = new Float32Array(state.referenceDctSize * numFrames); + drawCurveToSpectrogram(curve, curveSpec, state.referenceDctSize, numFrames); + + // Parse curve color (hex to RGB) + const color = hexToRgb(curve.color || '#0e639c'); + + const imgData = offscreenCtx.createImageData(state.canvasWidth, state.canvasHeight); + + // CORRECT MAPPING: Iterate over destination pixels → sample source bins + for (let screenY = 0; screenY < state.canvasHeight; screenY++) { + for (let screenX = 0; screenX < state.canvasWidth; screenX++) { + // Convert screen coordinates to spectrogram coordinates + const spectroCoords = screenToSpectrogram(screenX, screenY); + const frameIdx = Math.floor(spectroCoords.frame); + + // Convert freqHz back to bin + const bin = Math.round((spectroCoords.freqHz / (SAMPLE_RATE / 2)) * state.referenceDctSize); + + // Bounds check + if (frameIdx < 0 || frameIdx >= numFrames) continue; + if (bin < 0 || bin >= state.referenceDctSize) continue; + + // Sample spectrogram + const specValue = curveSpec[frameIdx * state.referenceDctSize + bin]; + + // Logarithmic intensity mapping with steeper falloff for procedural curves + const amplitude = Math.abs(specValue); + let intensity = 0.0; + if (amplitude > 0.001) { // Higher noise floor for cleaner visualization + const dB = 20.0 * Math.log10(amplitude); + const dB_min = -40.0; // Higher floor = steeper falloff (was -60) + const dB_max = 40.0; // Peak + const normalized = (dB - dB_min) / (dB_max - dB_min); + intensity = Math.max(0, Math.min(1.0, normalized)); // 0.0 to 1.0 + } + + if (intensity > 0.01) { // Only draw visible pixels + const pixelIdx = (screenY * state.canvasWidth + screenX) * 4; + // Use constant color with alpha for intensity (pure colors) + imgData.data[pixelIdx + 0] = color.r; + imgData.data[pixelIdx + 1] = color.g; + imgData.data[pixelIdx + 2] = color.b; + imgData.data[pixelIdx + 3] = Math.floor(intensity * 255); // Alpha = intensity + } + } + } + + offscreenCtx.putImageData(imgData, 0, 0); + + // Draw offscreen canvas with curve volume as opacity (blends properly) + const curveOpacity = 0.6 * curve.volume; // Base opacity × curve volume + ctx.globalAlpha = curveOpacity; + ctx.drawImage(offscreen, 0, 0); + }); + + ctx.globalAlpha = 1.0; +} + +// Helper: Convert hex color to RGB +function hexToRgb(hex) { + const result = /^#?([a-f\d]{2})([a-f\d]{2})([a-f\d]{2})$/i.exec(hex); + return result ? { + r: parseInt(result[1], 16), + g: parseInt(result[2], 16), + b: parseInt(result[3], 16) + } : {r: 14, g: 99, b: 156}; // Default blue +} + +function drawControlPoints(ctx) { + state.curves.forEach(curve => { + const isSelected = curve.id === state.selectedCurveId; + const curveColor = curve.color || '#0e639c'; + + // Draw Bezier curve path + if (curve.controlPoints.length >= 2) { + ctx.strokeStyle = isSelected ? curveColor : '#666666'; + ctx.lineWidth = isSelected ? 3 : 2; + ctx.beginPath(); + + for (let i = 0; i < curve.controlPoints.length; i++) { + const point = curve.controlPoints[i]; + const screenPos = spectrogramToScreen(point.frame, point.freqHz); + + if (i === 0) { + ctx.moveTo(screenPos.x, screenPos.y); + } else { + ctx.lineTo(screenPos.x, screenPos.y); + } + } + + ctx.stroke(); + } + + // Draw control points + curve.controlPoints.forEach((point, idx) => { + const screenPos = spectrogramToScreen(point.frame, point.freqHz); + const isPointSelected = isSelected && idx === state.selectedControlPointIdx; + + ctx.fillStyle = isPointSelected ? '#ffaa00' : (isSelected ? curveColor : '#888888'); + ctx.beginPath(); + ctx.arc(screenPos.x, screenPos.y, 6, 0, 2 * Math.PI); + ctx.fill(); + + ctx.strokeStyle = '#ffffff'; + ctx.lineWidth = 2; + ctx.stroke(); + + // Draw label + if (isSelected) { + ctx.fillStyle = '#ffffff'; + ctx.font = '11px monospace'; + ctx.fillText(`${Math.round(point.freqHz)}Hz`, screenPos.x + 10, screenPos.y - 5); + } + }); + }); +} + +function drawFrequencyAxis(ctx) { + if (!USE_LOG_SCALE) return; // Only draw axis in log-scale mode + + // Standard musical frequencies to display + const frequencies = [20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 16000]; + + ctx.fillStyle = '#cccccc'; + ctx.font = '11px monospace'; + ctx.textAlign = 'right'; + ctx.textBaseline = 'middle'; + + frequencies.forEach(freq => { + const screenPos = spectrogramToScreen(0, freq); + const y = screenPos.y; + + if (y >= 0 && y <= state.canvasHeight) { + // Draw frequency label + const label = freq >= 1000 ? `${freq / 1000}k` : `${freq}`; + ctx.fillText(label, state.canvasWidth - 5, y); + + // Draw subtle grid line + ctx.strokeStyle = 'rgba(255, 255, 255, 0.1)'; + ctx.lineWidth = 1; + ctx.beginPath(); + ctx.moveTo(0, y); + ctx.lineTo(state.canvasWidth - 40, y); // Leave space for label + ctx.stroke(); + } + }); +} + +// ============================================================================ +// Procedural Spectrogram Generation +// ============================================================================ + +function generateProceduralSpectrogram(numFrames) { + const spectrogram = new Float32Array(state.referenceDctSize * numFrames); + + // For each curve, draw its contribution + state.curves.forEach(curve => { + drawCurveToSpectrogram(curve, spectrogram, state.referenceDctSize, numFrames); + }); + + return spectrogram; +} + +function drawCurveToSpectrogram(curve, spectrogram, dctSize, numFrames) { + if (curve.controlPoints.length === 0) return; + + // Find the frame range covered by control points + const frames = curve.controlPoints.map(p => p.frame); + const minFrame = Math.max(0, Math.min(...frames)); // Clamp to valid range + const maxFrame = Math.min(numFrames - 1, Math.max(...frames)); + + // Amplitude scaling factor to match typical DCT coefficient magnitudes + // Increased from 10.0 to 50.0 for better audibility + const AMPLITUDE_SCALE = 50.0; + + // Apply curve volume to the amplitude + const curveVolume = curve.volume || 1.0; + + // Only iterate over the range where control points exist + for (let frame = minFrame; frame <= maxFrame; frame++) { + // Evaluate Bezier curve at this frame + const freqHz = evaluateBezierLinear(curve.controlPoints, frame, 'freqHz'); + const amplitude = evaluateBezierLinear(curve.controlPoints, frame, 'amplitude'); + + // Convert freq to bin + const freqBin0 = (freqHz / (SAMPLE_RATE / 2)) * dctSize; + + // Apply vertical profile + for (let bin = 0; bin < dctSize; bin++) { + const dist = Math.abs(bin - freqBin0); + const profileValue = evaluateProfile(curve.profile, dist); + + const idx = frame * dctSize + bin; + spectrogram[idx] += amplitude * profileValue * AMPLITUDE_SCALE * curveVolume; + } + } +} + +function evaluateBezierLinear(controlPoints, frame, property) { + if (controlPoints.length === 0) return 0; + if (controlPoints.length === 1) return controlPoints[0][property]; + + const frames = controlPoints.map(p => p.frame); + const values = controlPoints.map(p => p[property]); + + // Clamp to range + if (frame <= frames[0]) return values[0]; + if (frame >= frames[frames.length - 1]) return values[values.length - 1]; + + // Find segment + for (let i = 0; i < frames.length - 1; i++) { + if (frame >= frames[i] && frame <= frames[i + 1]) { + const t = (frame - frames[i]) / (frames[i + 1] - frames[i]); + return values[i] * (1 - t) + values[i + 1] * t; + } + } + + return values[values.length - 1]; +} + +function evaluateProfile(profile, distance) { + switch (profile.type) { + case 'gaussian': { + const sigma = profile.param1; + return Math.exp(-(distance * distance) / (sigma * sigma)); + } + + case 'decaying_sinusoid': { + const decay = profile.param1; + const omega = profile.param2 || 0.5; + return Math.exp(-decay * distance) * Math.cos(omega * distance); + } + + case 'noise': { + const amplitude = profile.param1; + const decay = profile.param2 || 30.0; // Decay rate (like sigma for Gaussian) + + // Deterministic noise based on distance + const seed = 1234; + const hash = Math.floor((seed + distance * 17.13) * 1000) % 10000; + const noise = (hash / 10000) * 2.0 - 1.0; // Random value: -1 to +1 + + // Apply exponential decay (like Gaussian) + const decayFactor = Math.exp(-(distance * distance) / (decay * decay)); + + return amplitude * noise * decayFactor; + } + + default: + return 0; + } +} + +// ============================================================================ +// Audio Playback +// ============================================================================ + +function playAudio(source) { + if (!state.audioContext) { + alert('Audio context not available'); + return; + } + + stopAudio(); + + let spectrogram; + let numFrames; + + if (source === 'original') { + if (!state.referenceSpectrogram) { + alert('No reference audio loaded'); + return; + } + spectrogram = state.referenceSpectrogram; + numFrames = state.referenceNumFrames; + } else { // procedural + if (state.curves.length === 0) { + alert('No curves defined. Add a curve first.'); + return; + } + numFrames = state.referenceNumFrames || 100; + spectrogram = generateProceduralSpectrogram(numFrames); + } + + // Convert spectrogram to audio via IDCT + const audioData = spectrogramToAudio(spectrogram, state.referenceDctSize, numFrames); + + // Create audio buffer + const audioBuffer = state.audioContext.createBuffer(1, audioData.length, SAMPLE_RATE); + audioBuffer.getChannelData(0).set(audioData); + + // Create gain node for volume control + const gainNode = state.audioContext.createGain(); + gainNode.gain.value = state.playbackVolume; + + // Play + const bufferSource = state.audioContext.createBufferSource(); + bufferSource.buffer = audioBuffer; + bufferSource.connect(gainNode); + gainNode.connect(state.audioContext.destination); + bufferSource.start(); + + state.currentSource = bufferSource; + state.currentGainNode = gainNode; // Store gain node for live volume updates + state.isPlaying = true; + + // Start playhead animation + state.playbackStartTime = state.audioContext.currentTime; + state.playbackDuration = audioData.length / SAMPLE_RATE; + state.playbackCurrentFrame = 0; + updatePlayhead(); + + bufferSource.onended = () => { + state.isPlaying = false; + state.currentSource = null; + state.currentGainNode = null; // Clear gain node reference + state.playbackCurrentFrame = 0; + render(); // Clear playhead + }; + + console.log('Playing audio:', audioData.length, 'samples at volume', state.playbackVolume); +} + +function updatePlayhead() { + if (!state.isPlaying) return; + + // Calculate current playback position + const elapsed = state.audioContext.currentTime - state.playbackStartTime; + const progress = Math.min(1.0, elapsed / state.playbackDuration); + state.playbackCurrentFrame = progress * (state.referenceNumFrames || 100); + + // Redraw with playhead + render(); + + // Update spectrum viewer + drawSpectrumViewer(); + + // Continue animation + requestAnimationFrame(updatePlayhead); +} + +function drawSpectrumViewer() { + const viewer = document.getElementById('spectrumViewer'); + const canvas = document.getElementById('spectrumCanvas'); + const ctx = canvas.getContext('2d'); + + // Always show viewer (not just during playback) + viewer.classList.add('active'); + + // Determine which frame to display + let frameIdx; + if (state.isPlaying) { + frameIdx = Math.floor(state.playbackCurrentFrame); + } else { + // When not playing, show frame under mouse + frameIdx = state.mouseFrame; + } + + if (frameIdx < 0 || frameIdx >= (state.referenceNumFrames || 100)) return; + + // Clear canvas + ctx.fillStyle = '#1e1e1e'; + ctx.fillRect(0, 0, canvas.width, canvas.height); + + const numBars = 100; // Downsample to 100 bars for performance + const barWidth = canvas.width / numBars; + + // Get reference spectrum (if available) + let refSpectrum = null; + if (state.referenceSpectrogram && frameIdx < state.referenceNumFrames) { + refSpectrum = new Float32Array(state.referenceDctSize); + for (let bin = 0; bin < state.referenceDctSize; bin++) { + refSpectrum[bin] = state.referenceSpectrogram[frameIdx * state.referenceDctSize + bin]; + } + } + + // Get procedural spectrum (if curves exist) + let procSpectrum = null; + if (state.curves.length > 0) { + const numFrames = state.referenceNumFrames || 100; + const fullProcSpec = new Float32Array(state.referenceDctSize * numFrames); + state.curves.forEach(curve => { + drawCurveToSpectrogram(curve, fullProcSpec, state.referenceDctSize, numFrames); + }); + + // Extract just this frame + procSpectrum = new Float32Array(state.referenceDctSize); + for (let bin = 0; bin < state.referenceDctSize; bin++) { + procSpectrum[bin] = fullProcSpec[frameIdx * state.referenceDctSize + bin]; + } + } + + // Draw spectrum bars (both reference and procedural overlaid) + for (let i = 0; i < numBars; i++) { + const binIdx = Math.floor((i / numBars) * state.referenceDctSize); + + // Draw reference spectrum (green, behind) + if (refSpectrum) { + const amplitude = Math.abs(refSpectrum[binIdx]); + let height = 0; + if (amplitude > 0.0001) { + const dB = 20.0 * Math.log10(amplitude); + const dB_min = -60.0; + const dB_max = 40.0; + const normalized = (dB - dB_min) / (dB_max - dB_min); + height = Math.max(0, Math.min(canvas.height, normalized * canvas.height)); + } + + if (height > 0) { + const gradient = ctx.createLinearGradient(0, canvas.height - height, 0, canvas.height); + gradient.addColorStop(0, '#00ff00'); + gradient.addColorStop(1, '#004400'); + ctx.fillStyle = gradient; + ctx.fillRect(i * barWidth, canvas.height - height, barWidth - 1, height); + } + } + + // Draw procedural spectrum (red, overlaid) + if (procSpectrum) { + const amplitude = Math.abs(procSpectrum[binIdx]); + let height = 0; + if (amplitude > 0.001) { + const dB = 20.0 * Math.log10(amplitude); + const dB_min = -40.0; // Same as procedural spectrogram rendering + const dB_max = 40.0; + const normalized = (dB - dB_min) / (dB_max - dB_min); + height = Math.max(0, Math.min(canvas.height, normalized * canvas.height)); + } + + if (height > 0) { + const gradient = ctx.createLinearGradient(0, canvas.height - height, 0, canvas.height); + gradient.addColorStop(0, '#ff5555'); // Bright red + gradient.addColorStop(1, '#550000'); // Dark red + ctx.fillStyle = gradient; + // Make it slightly transparent to see overlap + ctx.globalAlpha = 0.7; + ctx.fillRect(i * barWidth, canvas.height - height, barWidth - 1, height); + ctx.globalAlpha = 1.0; + } + } + } + + // Draw frequency labels + ctx.fillStyle = '#888888'; + ctx.font = '9px monospace'; + ctx.textAlign = 'left'; + ctx.fillText('20 Hz', 2, canvas.height - 2); + ctx.textAlign = 'right'; + ctx.fillText('16 kHz', canvas.width - 2, canvas.height - 2); + + // Draw frame number label (top-left) + ctx.textAlign = 'left'; + ctx.fillStyle = state.isPlaying ? '#ff3333' : '#aaaaaa'; + ctx.fillText(`Frame ${frameIdx}`, 2, 10); +} + +function stopAudio() { + if (state.currentSource) { + try { + state.currentSource.stop(); + state.currentSource.disconnect(); + } catch (e) { + // Source may have already stopped naturally + } + state.currentSource = null; + } + state.currentGainNode = null; // Clear gain node reference + state.isPlaying = false; +} + +function spectrogramToAudio(spectrogram, dctSize, numFrames) { + const hopSize = dctSize / 2; + const audioLength = numFrames * hopSize + dctSize; + const audioData = new Float32Array(audioLength); + const window = hanningWindowArray; + + for (let frameIdx = 0; frameIdx < numFrames; frameIdx++) { + // Extract frame (no windowing - window is only for analysis, not synthesis) + const frame = new Float32Array(dctSize); + for (let b = 0; b < dctSize; b++) { + frame[b] = spectrogram[frameIdx * dctSize + b]; + } + + // IDCT + const timeFrame = javascript_idct_512(frame); + + // Apply synthesis window for overlap-add + const frameStart = frameIdx * hopSize; + for (let i = 0; i < dctSize; i++) { + if (frameStart + i < audioLength) { + audioData[frameStart + i] += timeFrame[i] * window[i]; + } + } + } + + return audioData; +} + +// ============================================================================ +// Undo/Redo +// ============================================================================ + +function saveHistoryState(action) { + // Remove any states after current index + state.history = state.history.slice(0, state.historyIndex + 1); + + // Save current state + const snapshot = { + action, + curves: JSON.parse(JSON.stringify(state.curves)), + selectedCurveId: state.selectedCurveId + }; + + state.history.push(snapshot); + + // Limit history size + if (state.history.length > state.maxHistorySize) { + state.history.shift(); + } else { + state.historyIndex++; + } + + updateUndoRedoButtons(); +} + +function undo() { + if (state.historyIndex <= 0) return; + + state.historyIndex--; + const snapshot = state.history[state.historyIndex]; + + state.curves = JSON.parse(JSON.stringify(snapshot.curves)); + state.selectedCurveId = snapshot.selectedCurveId; + state.selectedControlPointIdx = null; + + updateCurveUI(); + updateUndoRedoButtons(); + render(); + + console.log('Undo:', snapshot.action); +} + +function redo() { + if (state.historyIndex >= state.history.length - 1) return; + + state.historyIndex++; + const snapshot = state.history[state.historyIndex]; + + state.curves = JSON.parse(JSON.stringify(snapshot.curves)); + state.selectedCurveId = snapshot.selectedCurveId; + state.selectedControlPointIdx = null; + + updateCurveUI(); + updateUndoRedoButtons(); + render(); + + console.log('Redo:', snapshot.action); +} + +function updateUndoRedoButtons() { + document.getElementById('undoBtn').disabled = state.historyIndex <= 0; + document.getElementById('redoBtn').disabled = state.historyIndex >= state.history.length - 1; +} + +// ============================================================================ +// File Export +// ============================================================================ + +function saveProceduralParams() { + if (state.curves.length === 0) { + alert('No curves to save. Add at least one curve first.'); + return; + } + + const text = generateProceduralParamsText(); + downloadTextFile('procedural_params.txt', text); +} + +function generateProceduralParamsText() { + let text = '# Spectral Brush Procedural Parameters\n'; + text += `METADATA dct_size=${state.referenceDctSize} num_frames=${state.referenceNumFrames || 100} sample_rate=${SAMPLE_RATE}\n\n`; + + state.curves.forEach((curve, idx) => { + text += `CURVE bezier\n`; + + curve.controlPoints.forEach(point => { + text += ` CONTROL_POINT ${point.frame} ${point.freqHz.toFixed(1)} ${point.amplitude.toFixed(3)}\n`; + }); + + text += ` PROFILE ${curve.profile.type}`; + if (curve.profile.type === 'gaussian') { + text += ` sigma=${curve.profile.param1.toFixed(1)}`; + } else if (curve.profile.type === 'decaying_sinusoid') { + text += ` decay=${curve.profile.param1.toFixed(2)} frequency=${curve.profile.param2.toFixed(2)}`; + } else if (curve.profile.type === 'noise') { + text += ` amplitude=${curve.profile.param1.toFixed(2)} seed=${curve.profile.param2.toFixed(0)}`; + } + text += '\n'; + + // Add curve volume + text += ` VOLUME ${curve.volume.toFixed(3)}\n`; + + text += 'END_CURVE\n\n'; + }); + + return text; +} + +function generateCppCode() { + if (state.curves.length === 0) { + alert('No curves to export. Add at least one curve first.'); + return; + } + + const code = generateCppCodeText(); + downloadTextFile('gen_procedural.cc', code); +} + +function generateCppCodeText() { + let code = '// Generated by Spectral Brush Editor\n'; + code += '// This code reproduces the procedural audio procedurally at runtime\n\n'; + code += '#include "audio/spectral_brush.h"\n\n'; + + code += 'void gen_procedural(float* spec, int dct_size, int num_frames) {\n'; + + state.curves.forEach((curve, curveIdx) => { + code += ` // Curve ${curveIdx} (volume=${curve.volume.toFixed(3)})\n`; + code += ' {\n'; + + // Control points arrays + const numPoints = curve.controlPoints.length; + code += ` const float frames[] = {`; + code += curve.controlPoints.map(p => `${p.frame}.0f`).join(', '); + code += '};\n'; + + code += ` const float freqs[] = {`; + code += curve.controlPoints.map(p => `${p.freqHz.toFixed(1)}f`).join(', '); + code += '};\n'; + + // Apply curve volume to amplitudes + const curveVolume = curve.volume || 1.0; + code += ` const float amps[] = {`; + code += curve.controlPoints.map(p => `${(p.amplitude * curveVolume).toFixed(3)}f`).join(', '); + code += '};\n\n'; + + // Profile type + let profileEnum; + if (curve.profile.type === 'gaussian') { + profileEnum = 'PROFILE_GAUSSIAN'; + } else if (curve.profile.type === 'decaying_sinusoid') { + profileEnum = 'PROFILE_DECAYING_SINUSOID'; + } else if (curve.profile.type === 'noise') { + profileEnum = 'PROFILE_NOISE'; + } + + // Function call + if (curveIdx === 0) { + code += ` draw_bezier_curve(spec, dct_size, num_frames,\n`; + } else { + code += ` draw_bezier_curve_add(spec, dct_size, num_frames,\n`; + } + code += ` frames, freqs, amps, ${numPoints},\n`; + code += ` ${profileEnum}, ${curve.profile.param1.toFixed(2)}f`; + + if (curve.profile.type === 'decaying_sinusoid' || curve.profile.type === 'noise') { + code += `, ${curve.profile.param2.toFixed(2)}f`; + } + + code += ');\n'; + code += ' }\n\n'; + }); + + code += '}\n\n'; + code += '// Usage in demo_assets.txt:\n'; + code += '// SOUND_PROC, PROC(gen_procedural), NONE, "Procedural sound"\n'; + + return code; +} + +function downloadTextFile(filename, text) { + const blob = new Blob([text], {type: 'text/plain'}); + const url = URL.createObjectURL(blob); + + const a = document.createElement('a'); + a.href = url; + a.download = filename; + document.body.appendChild(a); + a.click(); + document.body.removeChild(a); + + URL.revokeObjectURL(url); + + console.log('Downloaded:', filename); +} + +// ============================================================================ +// Help Modal +// ============================================================================ + +function showHelp() { + document.getElementById('helpModal').style.display = 'flex'; +} + +function hideHelp() { + document.getElementById('helpModal').style.display = 'none'; +} |
