summaryrefslogtreecommitdiff
path: root/tools/spectral_editor/dct.js
diff options
context:
space:
mode:
Diffstat (limited to 'tools/spectral_editor/dct.js')
-rw-r--r--tools/spectral_editor/dct.js101
1 files changed, 43 insertions, 58 deletions
diff --git a/tools/spectral_editor/dct.js b/tools/spectral_editor/dct.js
index deff8a9..435a7e8 100644
--- a/tools/spectral_editor/dct.js
+++ b/tools/spectral_editor/dct.js
@@ -1,20 +1,10 @@
const dctSize = 512; // Default DCT size, read from header
// --- Utility Functions for Audio Processing ---
+// Fast O(N log N) IDCT using FFT
// JavaScript equivalent of C++ idct_512
function javascript_idct_512(input) {
- const output = new Float32Array(dctSize);
- const PI = Math.PI;
- const N = dctSize;
-
- for (let n = 0; n < N; ++n) {
- let sum = input[0] / 2.0;
- for (let k = 1; k < N; ++k) {
- sum += input[k] * Math.cos((PI / N) * k * (n + 0.5));
- }
- output[n] = sum * (2.0 / N);
- }
- return output;
+ return javascript_idct_512_fft(input);
}
// Hanning window for smooth audio transitions (JavaScript equivalent)
@@ -127,95 +117,90 @@ function fftInverse(real, imag, N) {
}
}
-// DCT-II via FFT using double-and-mirror method (matches C++ dct_fft)
-// This is a more robust algorithm that avoids reordering issues
+// DCT-II via FFT using reordering method (matches C++ dct_fft)
+// Reference: Numerical Recipes Chapter 12.3
function javascript_dct_fft(input, N) {
const PI = Math.PI;
- // Allocate arrays for 2N-point FFT
- const M = 2 * N;
- const real = new Float32Array(M);
- const imag = new Float32Array(M);
+ // Allocate arrays for N-point FFT
+ const real = new Float32Array(N);
+ const imag = new Float32Array(N);
- // Pack input: [x[0], x[1], ..., x[N-1], x[N-1], x[N-2], ..., x[1]]
- // This creates even symmetry for real-valued DCT
- for (let i = 0; i < N; i++) {
- real[i] = input[i];
- }
- for (let i = 0; i < N; i++) {
- real[N + i] = input[N - 1 - i];
+ // Reorder input: even indices first, then odd indices reversed
+ // [x[0], x[2], x[4], ...] followed by [x[N-1], x[N-3], x[N-5], ...]
+ for (let i = 0; i < N / 2; i++) {
+ real[i] = input[2 * i]; // Even indices: 0, 2, 4, ...
+ real[N - 1 - i] = input[2 * i + 1]; // Odd indices reversed: N-1, N-3, ...
}
// imag is already zeros (Float32Array default)
- // Apply 2N-point FFT
- fftForward(real, imag, M);
+ // Apply N-point FFT
+ fftForward(real, imag, N);
- // Extract DCT coefficients
+ // Extract DCT coefficients with phase correction
// DCT[k] = Re{FFT[k] * exp(-j*pi*k/(2*N))} * normalization
- // Note: Need to divide by 2 because we doubled the signal length
const output = new Float32Array(N);
for (let k = 0; k < N; k++) {
const angle = -PI * k / (2.0 * N);
const wr = Math.cos(angle);
const wi = Math.sin(angle);
- // Complex multiplication: (real + j*imag) * (wr + j*wi)
+ // Complex multiplication: (real[k] + j*imag[k]) * (wr + j*wi)
// Real part: real*wr - imag*wi
const dct_value = real[k] * wr - imag[k] * wi;
- // Apply DCT-II normalization (divide by 2 for double-length FFT)
+ // Apply DCT-II normalization
if (k === 0) {
- output[k] = dct_value * Math.sqrt(1.0 / N) / 2.0;
+ output[k] = dct_value * Math.sqrt(1.0 / N);
} else {
- output[k] = dct_value * Math.sqrt(2.0 / N) / 2.0;
+ output[k] = dct_value * Math.sqrt(2.0 / N);
}
}
return output;
}
-// IDCT (Inverse DCT-II) via FFT using double-and-mirror method (matches C++ idct_fft)
+// IDCT (DCT-III) via FFT using reordering method (matches C++ idct_fft)
+// Reference: Numerical Recipes Chapter 12.3
function javascript_idct_fft(input, N) {
const PI = Math.PI;
- // Allocate arrays for 2N-point FFT
- const M = 2 * N;
- const real = new Float32Array(M);
- const imag = new Float32Array(M);
+ // Allocate arrays for N-point FFT
+ const real = new Float32Array(N);
+ const imag = new Float32Array(N);
- // Prepare FFT input from DCT coefficients
- // IDCT = Re{IFFT[DCT * exp(j*pi*k/(2*N))]} * 2
+ // Prepare FFT input with inverse phase correction
+ // FFT[k] = DCT[k] * exp(+j*pi*k/(2*N)) / normalization
+ // Note: DCT-III needs factor of 2 for AC terms
for (let k = 0; k < N; k++) {
- const angle = PI * k / (2.0 * N); // Positive for inverse
+ const angle = PI * k / (2.0 * N); // Positive angle for inverse
const wr = Math.cos(angle);
const wi = Math.sin(angle);
- // Apply inverse normalization
- let scaled_input;
+ // Inverse of DCT-II normalization with correct DCT-III scaling
+ let scaled;
if (k === 0) {
- scaled_input = input[k] * Math.sqrt(N) * 2.0;
+ scaled = input[k] / Math.sqrt(1.0 / N);
} else {
- scaled_input = input[k] * Math.sqrt(N / 2.0) * 2.0;
+ // DCT-III needs factor of 2 for AC terms
+ scaled = input[k] / Math.sqrt(2.0 / N) * 2.0;
}
- // Complex multiplication: DCT[k] * exp(j*theta)
- real[k] = scaled_input * wr;
- imag[k] = scaled_input * wi;
- }
-
- // Fill second half with conjugate symmetry (for real output)
- for (let k = 1; k < N; k++) {
- real[M - k] = real[k];
- imag[M - k] = -imag[k];
+ // Complex multiplication: scaled * (wr + j*wi)
+ real[k] = scaled * wr;
+ imag[k] = scaled * wi;
}
// Apply inverse FFT
- fftInverse(real, imag, M);
+ fftInverse(real, imag, N);
- // Extract first N samples (real part only, imag should be ~0)
+ // Unpack: reverse the reordering from DCT
+ // Even output indices come from first half of FFT output
+ // Odd output indices come from second half (reversed)
const output = new Float32Array(N);
- for (let i = 0; i < N; i++) {
- output[i] = real[i];
+ for (let i = 0; i < N / 2; i++) {
+ output[2 * i] = real[i]; // Even positions
+ output[2 * i + 1] = real[N - 1 - i]; // Odd positions (reversed)
}
return output;