diff options
Diffstat (limited to 'tools/mq_editor/mq_extract.js')
| -rw-r--r-- | tools/mq_editor/mq_extract.js | 258 |
1 files changed, 228 insertions, 30 deletions
diff --git a/tools/mq_editor/mq_extract.js b/tools/mq_editor/mq_extract.js index 8a0ea0e..a530960 100644 --- a/tools/mq_editor/mq_extract.js +++ b/tools/mq_editor/mq_extract.js @@ -3,18 +3,19 @@ // Extract partials from audio buffer function extractPartials(params, stftCache) { - const {fftSize, threshold, sampleRate} = params; + const {fftSize, threshold, sampleRate, freqWeight, prominence} = params; const numFrames = stftCache.getNumFrames(); const frames = []; for (let i = 0; i < numFrames; ++i) { const cachedFrame = stftCache.getFrameAtIndex(i); - const squaredAmp = stftCache.getSquaredAmplitude(cachedFrame.time); - const peaks = detectPeaks(squaredAmp, fftSize, sampleRate, threshold); + const squaredAmp = cachedFrame.squaredAmplitude; + const phase = cachedFrame.phase; + const peaks = detectPeaks(squaredAmp, phase, fftSize, sampleRate, threshold, freqWeight, prominence); frames.push({time: cachedFrame.time, peaks}); } - const partials = trackPartials(frames); + const partials = trackPartials(frames, params); // Second pass: extend partials leftward to recover onset frames expandPartialsLeft(partials, frames); @@ -27,12 +28,32 @@ function extractPartials(params, stftCache) { return {partials, frames}; } +// Helper to interpolate phase via quadratic formula on unwrapped neighbors. +// This provides a more accurate phase estimate at the sub-bin peak location. +function phaseInterp(p_minus, p_center, p_plus, p_frac) { + // unwrap neighbors relative to center + let dp_minus = p_minus - p_center; + while (dp_minus > Math.PI) dp_minus -= 2 * Math.PI; + while (dp_minus < -Math.PI) dp_minus += 2 * Math.PI; + + let dp_plus = p_plus - p_center; + while (dp_plus > Math.PI) dp_plus -= 2 * Math.PI; + while (dp_plus < -Math.PI) dp_plus += 2 * Math.PI; + + const p_interp = p_center + (dp_plus - dp_minus) * p_frac * 0.5 + (dp_plus + dp_minus) * p_frac * p_frac; + return p_interp; +} + // Detect spectral peaks via local maxima + parabolic interpolation // squaredAmp: pre-computed re*re+im*im per bin -function detectPeaks(squaredAmp, fftSize, sampleRate, thresholdDB) { +// phase: pre-computed atan2(im,re) per bin +// freqWeight: if true, weight by f before peak detection (f * Power(f)) +function detectPeaks(squaredAmp, phase, fftSize, sampleRate, thresholdDB, freqWeight, prominenceDB = 0) { const mag = new Float32Array(fftSize / 2); + const binHz = sampleRate / fftSize; for (let i = 0; i < fftSize / 2; ++i) { - mag[i] = 10 * Math.log10(Math.max(squaredAmp[i], 1e-20)); + const w = freqWeight ? (i * binHz) : 1.0; + mag[i] = 10 * Math.log10(Math.max(squaredAmp[i] * w, 1e-20)); } const peaks = []; @@ -41,23 +62,49 @@ function detectPeaks(squaredAmp, fftSize, sampleRate, thresholdDB) { mag[i] > mag[i-1] && mag[i] > mag[i-2] && mag[i] > mag[i+1] && mag[i] > mag[i+2]) { - // Parabolic interpolation for sub-bin accuracy + // Check prominence if requested + if (prominenceDB > 0) { + let minLeft = mag[i]; + for (let k = i - 1; k >= 0; --k) { + if (mag[k] > mag[i]) break; // Found higher peak + if (mag[k] < minLeft) minLeft = mag[k]; + } + + let minRight = mag[i]; + for (let k = i + 1; k < mag.length; ++k) { + if (mag[k] > mag[i]) break; // Found higher peak + if (mag[k] < minRight) minRight = mag[k]; + } + + const valley = Math.max(minLeft, minRight); + if (mag[i] - valley < prominenceDB) continue; + } + + // Parabolic interpolation for sub-bin accuracy on frequency, amplitude, and phase const alpha = mag[i-1]; const beta = mag[i]; const gamma = mag[i+1]; const p = 0.5 * (alpha - gamma) / (alpha - 2*beta + gamma); + + const p_phase = phaseInterp(phase[i-1], phase[i], phase[i+1], p); const freq = (i + p) * sampleRate / fftSize; const ampDB = beta - 0.25 * (alpha - gamma) * p; - peaks.push({freq, amp: Math.pow(10, ampDB / 20)}); + peaks.push({freq, amp: Math.pow(10, ampDB / 20), phase: p_phase}); } } return peaks; } -// Track partials across frames (birth/death/continuation) -function trackPartials(frames) { +// Helper to compute shortest angle difference (e.g., between -pi and pi) +function normalizeAngle(angle) { + return angle - 2 * Math.PI * Math.floor((angle + Math.PI) / (2 * Math.PI)); +} + +// Track partials across frames using phase coherence for robust matching. +function trackPartials(frames, params) { + const { sampleRate, hopSize } = params; const partials = []; const activePartials = []; const candidates = []; // pre-birth @@ -68,19 +115,37 @@ function trackPartials(frames) { const deathAge = 5; // frames without match before death const minLength = 10; // frames required to keep partial + // Weight phase error heavily in cost function, scaled by frequency. + // This makes phase deviation more significant for high-frequency partials. + const phaseErrorWeight = 2.0; + for (const frame of frames) { const matched = new Set(); - // Continue active partials + // --- Continue active partials --- for (const partial of activePartials) { const lastFreq = partial.freqs[partial.freqs.length - 1]; - const tol = Math.max(lastFreq * trackingRatio, minTrackingHz); - let bestIdx = -1, bestDist = Infinity; + const lastPhase = partial.phases[partial.phases.length - 1]; + const velocity = partial.velocity || 0; + const predictedFreq = lastFreq + velocity; + + // Predict phase for the current frame based on the last frame's frequency. + const phaseAdvance = 2 * Math.PI * lastFreq * hopSize / sampleRate; + const predictedPhase = lastPhase + phaseAdvance; + + const tol = Math.max(predictedFreq * trackingRatio, minTrackingHz); + let bestIdx = -1, bestCost = Infinity; + // Find the peak in the new frame with the lowest cost (freq + phase error). for (let i = 0; i < frame.peaks.length; ++i) { if (matched.has(i)) continue; - const dist = Math.abs(frame.peaks[i].freq - lastFreq); - if (dist < tol && dist < bestDist) { bestDist = dist; bestIdx = i; } + const pk = frame.peaks[i]; + const freqError = Math.abs(pk.freq - predictedFreq); + if (freqError > tol) continue; + + const phaseError = Math.abs(normalizeAngle(pk.phase - predictedPhase)); + const cost = freqError + phaseErrorWeight * phaseError * predictedFreq; + if (cost < bestCost) { bestCost = cost; bestIdx = i; } } if (bestIdx >= 0) { @@ -88,24 +153,38 @@ function trackPartials(frames) { partial.times.push(frame.time); partial.freqs.push(pk.freq); partial.amps.push(pk.amp); + partial.phases.push(pk.phase); partial.age = 0; + partial.velocity = pk.freq - lastFreq; matched.add(bestIdx); } else { partial.age++; } } - // Advance candidates + // --- Advance candidates --- for (let i = candidates.length - 1; i >= 0; --i) { const cand = candidates[i]; const lastFreq = cand.freqs[cand.freqs.length - 1]; - const tol = Math.max(lastFreq * trackingRatio, minTrackingHz); - let bestIdx = -1, bestDist = Infinity; + const lastPhase = cand.phases[cand.phases.length - 1]; + const velocity = cand.velocity || 0; + const predictedFreq = lastFreq + velocity; + + const phaseAdvance = 2 * Math.PI * lastFreq * hopSize / sampleRate; + const predictedPhase = lastPhase + phaseAdvance; + + const tol = Math.max(predictedFreq * trackingRatio, minTrackingHz); + let bestIdx = -1, bestCost = Infinity; for (let j = 0; j < frame.peaks.length; ++j) { if (matched.has(j)) continue; - const dist = Math.abs(frame.peaks[j].freq - lastFreq); - if (dist < tol && dist < bestDist) { bestDist = dist; bestIdx = j; } + const pk = frame.peaks[j]; + const freqError = Math.abs(pk.freq - predictedFreq); + if (freqError > tol) continue; + + const phaseError = Math.abs(normalizeAngle(pk.phase - predictedPhase)); + const cost = freqError + phaseErrorWeight * phaseError * predictedFreq; + if (cost < bestCost) { bestCost = cost; bestIdx = j; } } if (bestIdx >= 0) { @@ -113,24 +192,34 @@ function trackPartials(frames) { cand.times.push(frame.time); cand.freqs.push(pk.freq); cand.amps.push(pk.amp); + cand.phases.push(pk.phase); + cand.velocity = pk.freq - lastFreq; matched.add(bestIdx); + // "graduate" a candidate to a full partial if (cand.times.length >= birthPersistence) { activePartials.push(cand); candidates.splice(i, 1); } } else { - candidates.splice(i, 1); + candidates.splice(i, 1); // kill candidate } } - // Spawn candidates from unmatched peaks + // --- Spawn new candidates from unmatched peaks --- for (let i = 0; i < frame.peaks.length; ++i) { if (matched.has(i)) continue; const pk = frame.peaks[i]; - candidates.push({times: [frame.time], freqs: [pk.freq], amps: [pk.amp], age: 0}); + candidates.push({ + times: [frame.time], + freqs: [pk.freq], + amps: [pk.amp], + phases: [pk.phase], + age: 0, + velocity: 0 + }); } - // Kill aged-out partials + // --- Kill aged-out partials --- for (let i = activePartials.length - 1; i >= 0; --i) { if (activePartials[i].age > deathAge) { if (activePartials[i].times.length >= minLength) partials.push(activePartials[i]); @@ -139,7 +228,7 @@ function trackPartials(frames) { } } - // Collect remaining active partials + // --- Collect remaining active partials --- for (const partial of activePartials) { if (partial.times.length >= minLength) partials.push(partial); } @@ -158,6 +247,8 @@ function expandPartialsLeft(partials, frames) { for (let i = 0; i < frames.length; ++i) timeToIdx.set(frames[i].time, i); for (const partial of partials) { + if (!partial.phases) partial.phases = []; // Ensure old partials have phase array + let startIdx = timeToIdx.get(partial.times[0]); if (startIdx == null || startIdx === 0) continue; @@ -178,23 +269,130 @@ function expandPartialsLeft(partials, frames) { partial.times.unshift(frame.time); partial.freqs.unshift(pk.freq); partial.amps.unshift(pk.amp); + partial.phases.unshift(pk.phase); + } + } +} + +// Autodetect spread_above / spread_below from the spectrogram. +// For each (subsampled) STFT frame within the partial, measures the +// half-power (-3dB) width of the spectral peak above and below the center. +// spread = half_bandwidth / f0 (fractional). +function autodetectSpread(partial, stftCache, fftSize, sampleRate) { + const curve = partial.freqCurve; + if (!curve || !stftCache) return {spread_above: 0.02, spread_below: 0.02}; + + const numFrames = stftCache.getNumFrames(); + const binHz = sampleRate / fftSize; + const halfBins = fftSize / 2; + + let sumAbove = 0, sumBelow = 0, count = 0; + + const STEP = 4; + for (let fi = 0; fi < numFrames; fi += STEP) { + const frame = stftCache.getFrameAtIndex(fi); + if (!frame) continue; + const t = frame.time; + if (t < curve.t0 || t > curve.t3) continue; + + const f0 = evalBezier(curve, t); + if (f0 <= 0) continue; + + const sq = frame.squaredAmplitude; + if (!sq) continue; + + // Find peak bin in ±10% window + const binCenter = f0 / binHz; + const searchBins = Math.max(3, Math.round(f0 * 0.10 / binHz)); + const binLo = Math.max(1, Math.floor(binCenter - searchBins)); + const binHi = Math.min(halfBins - 2, Math.ceil(binCenter + searchBins)); + + let peakBin = binLo, peakVal = sq[binLo]; + for (let b = binLo + 1; b <= binHi; ++b) { + if (sq[b] > peakVal) { peakVal = sq[b]; peakBin = b; } } + + const halfPower = peakVal * 0.5; // -3dB in power + + // Walk above peak until half-power, interpolate crossing + let aboveBin = peakBin; + while (aboveBin < halfBins - 1 && sq[aboveBin] > halfPower) ++aboveBin; + const tA = aboveBin > peakBin && sq[aboveBin - 1] !== sq[aboveBin] + ? (halfPower - sq[aboveBin - 1]) / (sq[aboveBin] - sq[aboveBin - 1]) + : 0; + const widthAbove = (aboveBin - 1 + tA - peakBin) * binHz; + + // Walk below peak until half-power, interpolate crossing + let belowBin = peakBin; + while (belowBin > 1 && sq[belowBin] > halfPower) --belowBin; + const tB = belowBin < peakBin && sq[belowBin + 1] !== sq[belowBin] + ? (halfPower - sq[belowBin + 1]) / (sq[belowBin] - sq[belowBin + 1]) + : 0; + const widthBelow = (peakBin - belowBin - 1 + tB) * binHz; + + sumAbove += (widthAbove / f0) * (widthAbove / f0); + sumBelow += (widthBelow / f0) * (widthBelow / f0); + ++count; } + + const spread_above = count > 0 ? Math.sqrt(sumAbove / count) : 0.01; + const spread_below = count > 0 ? Math.sqrt(sumBelow / count) : 0.01; + return {spread_above, spread_below}; } -// Fit cubic bezier to trajectory using samples at ~1/3 and ~2/3 as control points +// Fit cubic bezier to trajectory using least-squares for inner control points function fitBezier(times, values) { const n = times.length - 1; const t0 = times[0], v0 = values[0]; const t3 = times[n], v3 = values[n]; const dt = t3 - t0; - if (dt <= 0 || n === 0) { - return {t0, v0, t1: t0, v1: v0, t2: t3, v2: v3, t3, v3}; + if (dt <= 1e-9 || n < 2) { + // Linear fallback for too few points or zero duration + return {t0, v0, t1: t0 + dt / 3, v1: v0 + (v3 - v0) / 3, t2: t0 + 2 * dt / 3, v2: v0 + 2 * (v3 - v0) / 3, t3, v3}; } - const v1 = values[Math.round(n / 3)]; - const v2 = values[Math.round(2 * n / 3)]; + // Least squares solve for v1, v2 + // Bezier: B(u) = (1-u)^3*v0 + 3(1-u)^2*u*v1 + 3(1-u)*u^2*v2 + u^3*v3 + // Target_i = val_i - (1-u)^3*v0 - u^3*v3 + // Model_i = A_i*v1 + B_i*v2 + // A_i = 3(1-u)^2*u + // B_i = 3(1-u)*u^2 + + let sA2 = 0, sB2 = 0, sAB = 0, sAT = 0, sBT = 0; + + for (let i = 0; i <= n; ++i) { + const u = (times[i] - t0) / dt; + const u2 = u * u; + const u3 = u2 * u; + const invU = 1.0 - u; + const invU2 = invU * invU; + const invU3 = invU2 * invU; + + const A = 3 * invU2 * u; + const B = 3 * invU * u2; + const target = values[i] - (invU3 * v0 + u3 * v3); + + sA2 += A * A; + sB2 += B * B; + sAB += A * B; + sAT += A * target; + sBT += B * target; + } + + const det = sA2 * sB2 - sAB * sAB; + let v1, v2; + + if (Math.abs(det) < 1e-9) { + // Fallback to simple 1/3, 2/3 heuristic if matrix is singular + const idx1 = Math.round(n / 3); + const idx2 = Math.round(2 * n / 3); + v1 = values[idx1]; + v2 = values[idx2]; + } else { + v1 = (sB2 * sAT - sAB * sBT) / det; + v2 = (sA2 * sBT - sAB * sAT) / det; + } return {t0, v0, t1: t0 + dt / 3, v1, t2: t0 + 2 * dt / 3, v2, t3, v3}; } |
