summaryrefslogtreecommitdiff
path: root/tools/editor/dct.js
diff options
context:
space:
mode:
Diffstat (limited to 'tools/editor/dct.js')
-rw-r--r--tools/editor/dct.js167
1 files changed, 152 insertions, 15 deletions
diff --git a/tools/editor/dct.js b/tools/editor/dct.js
index e48ce2b..c081473 100644
--- a/tools/editor/dct.js
+++ b/tools/editor/dct.js
@@ -1,21 +1,6 @@
const dctSize = 512; // Default DCT size, read from header
// --- Utility Functions for Audio Processing ---
-// JavaScript equivalent of C++ idct_512
-function javascript_idct_512(input) {
- const output = new Float32Array(dctSize);
- const PI = Math.PI;
- const N = dctSize;
-
- for (let n = 0; n < N; ++n) {
- let sum = input[0] / 2.0;
- for (let k = 1; k < N; ++k) {
- sum += input[k] * Math.cos((PI / N) * k * (n + 0.5));
- }
- output[n] = sum * (2.0 / N);
- }
- return output;
-}
// Hanning window for smooth audio transitions (JavaScript equivalent)
function hanningWindow(size) {
@@ -29,3 +14,155 @@ function hanningWindow(size) {
const hanningWindowArray = hanningWindow(dctSize); // Pre-calculate window
+// ============================================================================
+// FFT-based DCT/IDCT Implementation
+// ============================================================================
+
+// Bit-reversal permutation (in-place)
+function bitReversePermute(real, imag, N) {
+ let temp_bits = N;
+ let num_bits = 0;
+ while (temp_bits > 1) {
+ temp_bits >>= 1;
+ num_bits++;
+ }
+
+ for (let i = 0; i < N; i++) {
+ let j = 0;
+ let temp = i;
+ for (let b = 0; b < num_bits; b++) {
+ j = (j << 1) | (temp & 1);
+ temp >>= 1;
+ }
+
+ if (j > i) {
+ const tmp_real = real[i];
+ const tmp_imag = imag[i];
+ real[i] = real[j];
+ imag[i] = imag[j];
+ real[j] = tmp_real;
+ imag[j] = tmp_imag;
+ }
+ }
+}
+
+// In-place radix-2 FFT
+function fftRadix2(real, imag, N, direction) {
+ const PI = Math.PI;
+
+ for (let stage_size = 2; stage_size <= N; stage_size *= 2) {
+ const half_stage = stage_size / 2;
+ const angle = direction * 2.0 * PI / stage_size;
+
+ let wr = 1.0;
+ let wi = 0.0;
+ const wr_delta = Math.cos(angle);
+ const wi_delta = Math.sin(angle);
+
+ for (let k = 0; k < half_stage; k++) {
+ for (let group_start = k; group_start < N; group_start += stage_size) {
+ const i = group_start;
+ const j = group_start + half_stage;
+
+ const temp_real = real[j] * wr - imag[j] * wi;
+ const temp_imag = real[j] * wi + imag[j] * wr;
+
+ real[j] = real[i] - temp_real;
+ imag[j] = imag[i] - temp_imag;
+ real[i] = real[i] + temp_real;
+ imag[i] = imag[i] + temp_imag;
+ }
+
+ const wr_old = wr;
+ wr = wr_old * wr_delta - wi * wi_delta;
+ wi = wr_old * wi_delta + wi * wr_delta;
+ }
+ }
+}
+
+function fftForward(real, imag, N) {
+ bitReversePermute(real, imag, N);
+ fftRadix2(real, imag, N, +1);
+}
+
+function fftInverse(real, imag, N) {
+ bitReversePermute(real, imag, N);
+ fftRadix2(real, imag, N, -1);
+
+ const scale = 1.0 / N;
+ for (let i = 0; i < N; i++) {
+ real[i] *= scale;
+ imag[i] *= scale;
+ }
+}
+
+// DCT-II via FFT using reordering method
+function javascript_dct_fft(input, N) {
+ const PI = Math.PI;
+
+ const real = new Float32Array(N);
+ const imag = new Float32Array(N);
+
+ for (let i = 0; i < N / 2; i++) {
+ real[i] = input[2 * i];
+ real[N - 1 - i] = input[2 * i + 1];
+ }
+
+ fftForward(real, imag, N);
+
+ const output = new Float32Array(N);
+ for (let k = 0; k < N; k++) {
+ const angle = -PI * k / (2.0 * N);
+ const wr = Math.cos(angle);
+ const wi = Math.sin(angle);
+
+ const dct_value = real[k] * wr - imag[k] * wi;
+
+ if (k === 0) {
+ output[k] = dct_value * Math.sqrt(1.0 / N);
+ } else {
+ output[k] = dct_value * Math.sqrt(2.0 / N);
+ }
+ }
+
+ return output;
+}
+
+// IDCT (DCT-III) via FFT using reordering method
+function javascript_idct_fft(input, N) {
+ const PI = Math.PI;
+
+ const real = new Float32Array(N);
+ const imag = new Float32Array(N);
+
+ for (let k = 0; k < N; k++) {
+ const angle = PI * k / (2.0 * N);
+ const wr = Math.cos(angle);
+ const wi = Math.sin(angle);
+
+ let scaled;
+ if (k === 0) {
+ scaled = input[k] / Math.sqrt(1.0 / N);
+ } else {
+ scaled = input[k] / Math.sqrt(2.0 / N) * 2.0;
+ }
+
+ real[k] = scaled * wr;
+ imag[k] = scaled * wi;
+ }
+
+ fftInverse(real, imag, N);
+
+ const output = new Float32Array(N);
+ for (let i = 0; i < N / 2; i++) {
+ output[2 * i] = real[i];
+ output[2 * i + 1] = real[N - 1 - i];
+ }
+
+ return output;
+}
+
+// Fast O(N log N) IDCT using FFT
+function javascript_idct_512(input) {
+ return javascript_idct_fft(input, dctSize);
+}