diff options
Diffstat (limited to 'src/tests/util')
| -rw-r--r-- | src/tests/util/test_maths.cc | 83 |
1 files changed, 39 insertions, 44 deletions
diff --git a/src/tests/util/test_maths.cc b/src/tests/util/test_maths.cc index 0fed85c..4233adc 100644 --- a/src/tests/util/test_maths.cc +++ b/src/tests/util/test_maths.cc @@ -3,16 +3,11 @@ // Verifies vector operations, matrix transformations, and interpolation. #include "util/mini_math.h" +#include "../common/test_math_helpers.h" #include <cassert> -#include <cmath> #include <iostream> #include <vector> -// Checks if two floats are approximately equal -bool near(float a, float b, float e = 0.001f) { - return std::abs(a - b) < e; -} - // Generic test runner for any vector type (vec2, vec3, vec4) template <typename T> void test_vector_ops(int n) { T a, b; @@ -25,37 +20,37 @@ template <typename T> void test_vector_ops(int n) { // Add T c = a + b; for (int i = 0; i < n; ++i) - assert(near(c[i], (float)(i + 1) + 10.0f)); + assert(test_near(c[i], (float)(i + 1) + 10.0f, 0.001f)); // Scale T s = a * 2.0f; for (int i = 0; i < n; ++i) - assert(near(s[i], (float)(i + 1) * 2.0f)); + assert(test_near(s[i], (float)(i + 1) * 2.0f, 0.001f)); // Dot Product // vec3(1,2,3) . vec3(1,2,3) = 1+4+9 = 14 float expected_dot = 0; for (int i = 0; i < n; ++i) expected_dot += a[i] * a[i]; - assert(near(T::dot(a, a), expected_dot)); + assert(test_near(T::dot(a, a), expected_dot, 0.001f)); // Norm (Length) - assert(near(a.norm(), std::sqrt(expected_dot))); + assert(test_near(a.norm(), std::sqrt(expected_dot), 0.001f)); // Normalize T n_vec = a.normalize(); - assert(near(n_vec.norm(), 1.0f)); + assert(test_near(n_vec.norm(), 1.0f, 0.001f)); // Normalize zero vector T zero_vec = T(); // Default construct to zero T norm_zero = zero_vec.normalize(); for (int i = 0; i < n; ++i) - assert(near(norm_zero[i], 0.0f)); + assert(test_near(norm_zero[i], 0.0f, 0.001f)); // Lerp T l = lerp(a, b, 0.3f); for (int i = 0; i < n; ++i) - assert(near(l[i], .7 * (i + 1) + .3 * 10.0f)); + assert(test_near(l[i], .7 * (i + 1) + .3 * 10.0f, 0.001f)); } // Specific test for padding alignment in vec3 @@ -69,7 +64,7 @@ void test_vec3_special() { // Cross Product vec3 c = vec3::cross(v, v2); - assert(near(c.x, 0) && near(c.y, 0) && near(c.z, 1)); + assert(test_near(c.x, 0, 0.001f) && test_near(c.y, 0, 0.001f) && test_near(c.z, 1, 0.001f)); } // Tests quaternion rotation, look_at, and slerp @@ -80,48 +75,48 @@ void test_quat() { vec3 v(1, 0, 0); quat q = quat::from_axis({0, 1, 0}, 1.5708f); // 90 deg Y vec3 r = q.rotate(v); - assert(near(r.x, 0) && near(r.z, -1)); + assert(test_near(r.x, 0, 0.001f) && test_near(r.z, -1, 0.001f)); // Rotation edge cases: 0 deg, 180 deg, zero vector quat zero_rot = quat::from_axis({1, 0, 0}, 0.0f); vec3 rotated_zero = zero_rot.rotate(v); - assert(near(rotated_zero.x, 1.0f)); // Original vector + assert(test_near(rotated_zero.x, 1.0f, 0.001f)); // Original vector quat half_pi_rot = quat::from_axis({0, 1, 0}, 3.14159f); // 180 deg Y vec3 rotated_half_pi = half_pi_rot.rotate(v); - assert(near(rotated_half_pi.x, -1.0f)); // Rotated 180 deg around Y + assert(test_near(rotated_half_pi.x, -1.0f, 0.001f)); // Rotated 180 deg around Y vec3 zero_vec(0, 0, 0); vec3 rotated_zero_vec = q.rotate(zero_vec); - assert(near(rotated_zero_vec.x, 0.0f) && near(rotated_zero_vec.y, 0.0f) && - near(rotated_zero_vec.z, 0.0f)); + assert(test_near(rotated_zero_vec.x, 0.0f, 0.001f) && test_near(rotated_zero_vec.y, 0.0f, 0.001f) && + test_near(rotated_zero_vec.z, 0.0f, 0.001f)); // Look At // Looking from origin to +X, with +Y as up. // The local forward vector (0,0,-1) should be transformed to (1,0,0) quat l = quat::look_at({0, 0, 0}, {10, 0, 0}, {0, 1, 0}); vec3 f = l.rotate({0, 0, -1}); - assert(near(f.x, 1.0f) && near(f.y, 0.0f) && near(f.z, 0.0f)); + assert(test_near(f.x, 1.0f, 0.001f) && test_near(f.y, 0.0f, 0.001f) && test_near(f.z, 0.0f, 0.001f)); // Slerp Midpoint quat q1(0, 0, 0, 1); quat q2 = quat::from_axis({0, 1, 0}, 1.5708f); // 90 deg quat mid = slerp(q1, q2, 0.5f); // 45 deg - assert(near(mid.y, 0.3826f)); // sin(pi/8) + assert(test_near(mid.y, 0.3826f, 0.001f)); // sin(pi/8) // Slerp edge cases quat slerp_mid_edge = slerp(q1, q2, 0.0f); - assert(near(slerp_mid_edge.w, q1.w) && near(slerp_mid_edge.x, q1.x) && - near(slerp_mid_edge.y, q1.y) && near(slerp_mid_edge.z, q1.z)); + assert(test_near(slerp_mid_edge.w, q1.w, 0.001f) && test_near(slerp_mid_edge.x, q1.x, 0.001f) && + test_near(slerp_mid_edge.y, q1.y, 0.001f) && test_near(slerp_mid_edge.z, q1.z, 0.001f)); slerp_mid_edge = slerp(q1, q2, 1.0f); - assert(near(slerp_mid_edge.w, q2.w) && near(slerp_mid_edge.x, q2.x) && - near(slerp_mid_edge.y, q2.y) && near(slerp_mid_edge.z, q2.z)); + assert(test_near(slerp_mid_edge.w, q2.w, 0.001f) && test_near(slerp_mid_edge.x, q2.x, 0.001f) && + test_near(slerp_mid_edge.y, q2.y, 0.001f) && test_near(slerp_mid_edge.z, q2.z, 0.001f)); // FromTo quat from_to_test = quat::from_to({1, 0, 0}, {0, 1, 0}); // 90 deg rotation around Z vec3 rotated = from_to_test.rotate({1, 0, 0}); - assert(near(rotated.y, 1.0f)); + assert(test_near(rotated.y, 1.0f, 0.001f)); } // Tests WebGPU specific matrices @@ -134,8 +129,8 @@ void test_matrices() { // Z_ndc = (m10 * Z_view + m14) / -Z_view float z_near = (p.m[10] * -n + p.m[14]) / n; float z_far = (p.m[10] * -f + p.m[14]) / f; - assert(near(z_near, 0.0f)); - assert(near(z_far, 1.0f)); + assert(test_near(z_near, 0.0f, 0.001f)); + assert(test_near(z_far, 1.0f, 0.001f)); // Test mat4::look_at vec3 eye(0, 0, 5); @@ -143,7 +138,7 @@ void test_matrices() { vec3 up(0, 1, 0); mat4 view = mat4::look_at(eye, target, up); // Point (0,0,0) in world should be at (0,0,-5) in view space - assert(near(view.m[14], -5.0f)); + assert(test_near(view.m[14], -5.0f, 0.001f)); // Test matrix multiplication mat4 t = mat4::translate({1, 2, 3}); @@ -153,34 +148,34 @@ void test_matrices() { // v = (1,1,1,1) -> scale(2,2,2) -> (2,2,2,1) -> translate(1,2,3) -> (3,4,5,1) vec4 v(1, 1, 1, 1); vec4 res = ts * v; - assert(near(res.x, 3.0f)); - assert(near(res.y, 4.0f)); - assert(near(res.z, 5.0f)); + assert(test_near(res.x, 3.0f, 0.001f)); + assert(test_near(res.y, 4.0f, 0.001f)); + assert(test_near(res.z, 5.0f, 0.001f)); // Test Rotation // Rotate 90 deg around Z. (1,0,0) -> (0,1,0) mat4 r = mat4::rotate({0, 0, 1}, 1.570796f); vec4 v_rot = r * vec4(1, 0, 0, 1); - assert(near(v_rot.x, 0.0f)); - assert(near(v_rot.y, 1.0f)); + assert(test_near(v_rot.x, 0.0f, 0.001f)); + assert(test_near(v_rot.y, 1.0f, 0.001f)); } // Tests easing curves void test_ease() { std::cout << "Testing Easing..." << std::endl; // Boundary tests - assert(near(ease::out_cubic(0.0f), 0.0f)); - assert(near(ease::out_cubic(1.0f), 1.0f)); - assert(near(ease::in_out_quad(0.0f), 0.0f)); - assert(near(ease::in_out_quad(1.0f), 1.0f)); - assert(near(ease::out_expo(0.0f), 0.0f)); - assert(near(ease::out_expo(1.0f), 1.0f)); + assert(test_near(ease::out_cubic(0.0f), 0.0f, 0.001f)); + assert(test_near(ease::out_cubic(1.0f), 1.0f, 0.001f)); + assert(test_near(ease::in_out_quad(0.0f), 0.0f, 0.001f)); + assert(test_near(ease::in_out_quad(1.0f), 1.0f, 0.001f)); + assert(test_near(ease::out_expo(0.0f), 0.0f, 0.001f)); + assert(test_near(ease::out_expo(1.0f), 1.0f, 0.001f)); // Midpoint/Logic tests assert(ease::out_cubic(0.5f) > 0.5f); // Out curves should exceed linear value early assert( - near(ease::in_out_quad(0.5f), 0.5f)); // Symmetric curves hit 0.5 at 0.5 + test_near(ease::in_out_quad(0.5f), 0.5f, 0.001f)); // Symmetric curves hit 0.5 at 0.5 assert(ease::out_expo(0.5f) > 0.5f); // Exponential out should be above linear } @@ -198,7 +193,7 @@ void test_spring() { v = 0; for (int i = 0; i < 200; ++i) spring::solve(p, v, 10.0f, 0.5f, 0.016f); - assert(near(p, 10.0f, 0.1f)); // Should be very close to target + assert(test_near(p, 10.0f, 0.1f)); // Should be very close to target // Test vector spring vec3 vp(0, 0, 0), vv(0, 0, 0), vt(10, 0, 0); @@ -210,7 +205,7 @@ void test_spring() { void check_identity(const mat4& m) { for (int i = 0; i < 16; ++i) { float expected = (i % 5 == 0) ? 1.0f : 0.0f; - if (!near(m.m[i], expected, 0.005f)) { + if (!test_near(m.m[i], expected, 0.005f)) { std::cerr << "Matrix not Identity at index " << i << ": got " << m.m[i] << " expected " << expected << std::endl; assert(false); @@ -254,7 +249,7 @@ void test_matrix_inversion() { mat4 trs_t = mat4::transpose(trs); mat4 trs_tt = mat4::transpose(trs_t); for (int i = 0; i < 16; ++i) { - assert(near(trs.m[i], trs_tt.m[i])); + assert(test_near(trs.m[i], trs_tt.m[i], 0.001f)); } // 7. Manual "stress" matrix (some small values, some large) |
