summaryrefslogtreecommitdiff
path: root/src/audio/fft.cc
diff options
context:
space:
mode:
Diffstat (limited to 'src/audio/fft.cc')
-rw-r--r--src/audio/fft.cc194
1 files changed, 194 insertions, 0 deletions
diff --git a/src/audio/fft.cc b/src/audio/fft.cc
new file mode 100644
index 0000000..25477b9
--- /dev/null
+++ b/src/audio/fft.cc
@@ -0,0 +1,194 @@
+// Fast Fourier Transform (FFT) implementation
+// Radix-2 Cooley-Tukey algorithm
+// Reference: Numerical Recipes, Press et al.
+
+#include "audio/fft.h"
+
+#include <cmath>
+#include <cstring>
+
+// Bit-reversal permutation (in-place)
+// Reorders array elements by reversing their binary indices
+static void bit_reverse_permute(float* real, float* imag, size_t N) {
+ const size_t bits = 0;
+ size_t temp_bits = N;
+ size_t num_bits = 0;
+ while (temp_bits > 1) {
+ temp_bits >>= 1;
+ num_bits++;
+ }
+
+ for (size_t i = 0; i < N; i++) {
+ // Compute bit-reversed index
+ size_t j = 0;
+ size_t temp = i;
+ for (size_t b = 0; b < num_bits; b++) {
+ j = (j << 1) | (temp & 1);
+ temp >>= 1;
+ }
+
+ // Swap if j > i (to avoid swapping twice)
+ if (j > i) {
+ const float tmp_real = real[i];
+ const float tmp_imag = imag[i];
+ real[i] = real[j];
+ imag[i] = imag[j];
+ real[j] = tmp_real;
+ imag[j] = tmp_imag;
+ }
+ }
+}
+
+// In-place radix-2 FFT (after bit-reversal)
+// direction: +1 for forward FFT, -1 for inverse FFT
+static void fft_radix2(float* real, float* imag, size_t N, int direction) {
+ const float PI = 3.14159265358979323846f;
+
+ // Butterfly operations
+ for (size_t stage_size = 2; stage_size <= N; stage_size *= 2) {
+ const size_t half_stage = stage_size / 2;
+ const float angle = direction * 2.0f * PI / stage_size;
+
+ // Precompute twiddle factors for this stage
+ float wr = 1.0f;
+ float wi = 0.0f;
+ const float wr_delta = cosf(angle);
+ const float wi_delta = sinf(angle);
+
+ for (size_t k = 0; k < half_stage; k++) {
+ // Apply butterfly to all groups at this stage
+ for (size_t group_start = k; group_start < N; group_start += stage_size) {
+ const size_t i = group_start;
+ const size_t j = group_start + half_stage;
+
+ // Complex multiplication: (real[j] + i*imag[j]) * (wr + i*wi)
+ const float temp_real = real[j] * wr - imag[j] * wi;
+ const float temp_imag = real[j] * wi + imag[j] * wr;
+
+ // Butterfly operation
+ real[j] = real[i] - temp_real;
+ imag[j] = imag[i] - temp_imag;
+ real[i] = real[i] + temp_real;
+ imag[i] = imag[i] + temp_imag;
+ }
+
+ // Update twiddle factor for next k (rotation)
+ const float wr_old = wr;
+ wr = wr_old * wr_delta - wi * wi_delta;
+ wi = wr_old * wi_delta + wi * wr_delta;
+ }
+ }
+}
+
+void fft_forward(float* real, float* imag, size_t N) {
+ bit_reverse_permute(real, imag, N);
+ fft_radix2(real, imag, N, +1);
+}
+
+void fft_inverse(float* real, float* imag, size_t N) {
+ bit_reverse_permute(real, imag, N);
+ fft_radix2(real, imag, N, -1);
+
+ // Scale by 1/N
+ const float scale = 1.0f / N;
+ for (size_t i = 0; i < N; i++) {
+ real[i] *= scale;
+ imag[i] *= scale;
+ }
+}
+
+// DCT-II via FFT using double-and-mirror method
+// This is a more robust algorithm that avoids reordering issues
+// Reference: Numerical Recipes, Press et al.
+void dct_fft(const float* input, float* output, size_t N) {
+ const float PI = 3.14159265358979323846f;
+
+ // Allocate temporary arrays for 2N-point FFT
+ const size_t M = 2 * N;
+ float* real = new float[M];
+ float* imag = new float[M];
+
+ // Pack input: [x[0], x[1], ..., x[N-1], x[N-1], x[N-2], ..., x[1]]
+ // This creates even symmetry for real-valued DCT
+ for (size_t i = 0; i < N; i++) {
+ real[i] = input[i];
+ }
+ for (size_t i = 0; i < N; i++) {
+ real[N + i] = input[N - 1 - i];
+ }
+ memset(imag, 0, M * sizeof(float));
+
+ // Apply 2N-point FFT
+ fft_forward(real, imag, M);
+
+ // Extract DCT coefficients
+ // DCT[k] = Re{FFT[k] * exp(-j*pi*k/(2*N))} * normalization
+ // Note: Need to divide by 2 because we doubled the signal length
+ for (size_t k = 0; k < N; k++) {
+ const float angle = -PI * k / (2.0f * N);
+ const float wr = cosf(angle);
+ const float wi = sinf(angle);
+
+ // Complex multiplication: (real + j*imag) * (wr + j*wi)
+ // Real part: real*wr - imag*wi
+ const float dct_value = real[k] * wr - imag[k] * wi;
+
+ // Apply DCT-II normalization (divide by 2 for double-length FFT)
+ if (k == 0) {
+ output[k] = dct_value * sqrtf(1.0f / N) / 2.0f;
+ } else {
+ output[k] = dct_value * sqrtf(2.0f / N) / 2.0f;
+ }
+ }
+
+ delete[] real;
+ delete[] imag;
+}
+
+// IDCT (Inverse DCT-II) via FFT using double-and-mirror method
+// This is the inverse of the DCT-II (used for synthesis)
+void idct_fft(const float* input, float* output, size_t N) {
+ const float PI = 3.14159265358979323846f;
+
+ // Allocate temporary arrays for 2N-point FFT
+ const size_t M = 2 * N;
+ float* real = new float[M];
+ float* imag = new float[M];
+
+ // Prepare FFT input from DCT coefficients
+ // IDCT = Re{IFFT[DCT * exp(j*pi*k/(2*N))]} * 2
+ for (size_t k = 0; k < N; k++) {
+ const float angle = PI * k / (2.0f * N); // Positive for inverse
+ const float wr = cosf(angle);
+ const float wi = sinf(angle);
+
+ // Apply inverse normalization
+ float scaled_input;
+ if (k == 0) {
+ scaled_input = input[k] * sqrtf(N) * 2.0f;
+ } else {
+ scaled_input = input[k] * sqrtf(N / 2.0f) * 2.0f;
+ }
+
+ // Complex multiplication: DCT[k] * exp(j*theta)
+ real[k] = scaled_input * wr;
+ imag[k] = scaled_input * wi;
+ }
+
+ // Fill second half with conjugate symmetry (for real output)
+ for (size_t k = 1; k < N; k++) {
+ real[M - k] = real[k];
+ imag[M - k] = -imag[k];
+ }
+
+ // Apply inverse FFT
+ fft_inverse(real, imag, M);
+
+ // Extract first N samples (real part only, imag should be ~0)
+ for (size_t i = 0; i < N; i++) {
+ output[i] = real[i];
+ }
+
+ delete[] real;
+ delete[] imag;
+}