summaryrefslogtreecommitdiff
path: root/cnn_v2/training/train_cnn_v2.py
diff options
context:
space:
mode:
Diffstat (limited to 'cnn_v2/training/train_cnn_v2.py')
-rwxr-xr-xcnn_v2/training/train_cnn_v2.py472
1 files changed, 472 insertions, 0 deletions
diff --git a/cnn_v2/training/train_cnn_v2.py b/cnn_v2/training/train_cnn_v2.py
new file mode 100755
index 0000000..9e5df2f
--- /dev/null
+++ b/cnn_v2/training/train_cnn_v2.py
@@ -0,0 +1,472 @@
+#!/usr/bin/env python3
+"""CNN v2 Training Script - Uniform 12D→4D Architecture
+
+Architecture:
+- Static features (8D): p0-p3 (parametric), uv_x, uv_y, sin(10×uv_x), bias
+- Input RGBD (4D): original image mip 0
+- All layers: input RGBD (4D) + static (8D) = 12D → 4 channels
+- Per-layer kernel sizes (e.g., 1×1, 3×3, 5×5)
+- Uniform layer structure with bias=False (bias in static features)
+"""
+
+import argparse
+import numpy as np
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+from torch.utils.data import Dataset, DataLoader
+from pathlib import Path
+from PIL import Image
+import time
+import cv2
+
+
+def compute_static_features(rgb, depth=None, mip_level=0):
+ """Generate 8D static features (parametric + spatial).
+
+ Args:
+ rgb: (H, W, 3) RGB image [0, 1]
+ depth: (H, W) depth map [0, 1], optional (defaults to 1.0 = far plane)
+ mip_level: Mip level for p0-p3 (0=original, 1=half, 2=quarter, 3=eighth)
+
+ Returns:
+ (H, W, 8) static features: [p0, p1, p2, p3, uv_x, uv_y, sin20_y, bias]
+
+ Note: p0-p3 are parametric features from mip level. p3 uses depth (alpha channel) or 1.0
+
+ TODO: Binary format should support arbitrary layout and ordering for feature vector (7D),
+ alongside mip-level indication. Current layout is hardcoded as:
+ [p0, p1, p2, p3, uv_x, uv_y, sin20_y, bias]
+ Future: Allow experimentation with different feature combinations without shader recompilation.
+ Examples: [R, G, B, dx, dy, uv_x, bias] or [mip1.r, mip2.g, laplacian, uv_x, sin20_x, bias]
+ """
+ h, w = rgb.shape[:2]
+
+ # Generate mip level for p0-p3
+ if mip_level > 0:
+ # Downsample to mip level
+ mip_rgb = rgb.copy()
+ for _ in range(mip_level):
+ mip_rgb = cv2.pyrDown(mip_rgb)
+ # Upsample back to original size
+ for _ in range(mip_level):
+ mip_rgb = cv2.pyrUp(mip_rgb)
+ # Crop/pad to exact original size if needed
+ if mip_rgb.shape[:2] != (h, w):
+ mip_rgb = cv2.resize(mip_rgb, (w, h), interpolation=cv2.INTER_LINEAR)
+ else:
+ mip_rgb = rgb
+
+ # Parametric features (p0-p3) from mip level
+ p0 = mip_rgb[:, :, 0].astype(np.float32)
+ p1 = mip_rgb[:, :, 1].astype(np.float32)
+ p2 = mip_rgb[:, :, 2].astype(np.float32)
+ p3 = depth.astype(np.float32) if depth is not None else np.ones((h, w), dtype=np.float32) # Default 1.0 = far plane
+
+ # UV coordinates (normalized [0, 1])
+ uv_x = np.linspace(0, 1, w)[None, :].repeat(h, axis=0).astype(np.float32)
+ uv_y = np.linspace(0, 1, h)[:, None].repeat(w, axis=1).astype(np.float32)
+
+ # Multi-frequency position encoding
+ sin20_y = np.sin(20.0 * uv_y).astype(np.float32)
+
+ # Bias dimension (always 1.0) - replaces Conv2d bias parameter
+ bias = np.ones((h, w), dtype=np.float32)
+
+ # Stack: [p0, p1, p2, p3, uv.x, uv.y, sin20_y, bias]
+ features = np.stack([p0, p1, p2, p3, uv_x, uv_y, sin20_y, bias], axis=-1)
+ return features
+
+
+class CNNv2(nn.Module):
+ """CNN v2 - Uniform 12D→4D Architecture
+
+ All layers: input RGBD (4D) + static (8D) = 12D → 4 channels
+ Per-layer kernel sizes supported (e.g., [1, 3, 5])
+ Uses bias=False (bias integrated in static features as 1.0)
+
+ TODO: Add quantization-aware training (QAT) for 8-bit weights
+ - Use torch.quantization.QuantStub/DeQuantStub
+ - Train with fake quantization to adapt to 8-bit precision
+ - Target: ~1.3 KB weights (vs 2.6 KB with f16)
+ """
+
+ def __init__(self, kernel_sizes, num_layers=3):
+ super().__init__()
+ if isinstance(kernel_sizes, int):
+ kernel_sizes = [kernel_sizes] * num_layers
+ assert len(kernel_sizes) == num_layers, "kernel_sizes must match num_layers"
+
+ self.kernel_sizes = kernel_sizes
+ self.num_layers = num_layers
+ self.layers = nn.ModuleList()
+
+ # All layers: 12D input (4 RGBD + 8 static) → 4D output
+ for kernel_size in kernel_sizes:
+ self.layers.append(
+ nn.Conv2d(12, 4, kernel_size=kernel_size,
+ padding=kernel_size//2, bias=False)
+ )
+
+ def forward(self, input_rgbd, static_features):
+ """Forward pass with uniform 12D→4D layers.
+
+ Args:
+ input_rgbd: (B, 4, H, W) input image RGBD (mip 0)
+ static_features: (B, 8, H, W) static features
+
+ Returns:
+ (B, 4, H, W) RGBA output [0, 1]
+ """
+ # Layer 0: input RGBD (4D) + static (8D) = 12D
+ x = torch.cat([input_rgbd, static_features], dim=1)
+ x = self.layers[0](x)
+ x = torch.sigmoid(x) # Soft [0,1] for layer 0
+
+ # Layer 1+: previous (4D) + static (8D) = 12D
+ for i in range(1, self.num_layers):
+ x_input = torch.cat([x, static_features], dim=1)
+ x = self.layers[i](x_input)
+ if i < self.num_layers - 1:
+ x = F.relu(x)
+ else:
+ x = torch.sigmoid(x) # Soft [0,1] for final layer
+
+ return x
+
+
+class PatchDataset(Dataset):
+ """Patch-based dataset extracting salient regions from images."""
+
+ def __init__(self, input_dir, target_dir, patch_size=32, patches_per_image=64,
+ detector='harris', mip_level=0):
+ self.input_paths = sorted(Path(input_dir).glob("*.png"))
+ self.target_paths = sorted(Path(target_dir).glob("*.png"))
+ self.patch_size = patch_size
+ self.patches_per_image = patches_per_image
+ self.detector = detector
+ self.mip_level = mip_level
+
+ assert len(self.input_paths) == len(self.target_paths), \
+ f"Mismatch: {len(self.input_paths)} inputs vs {len(self.target_paths)} targets"
+
+ print(f"Found {len(self.input_paths)} image pairs")
+ print(f"Extracting {patches_per_image} patches per image using {detector} detector")
+ print(f"Total patches: {len(self.input_paths) * patches_per_image}")
+
+ def __len__(self):
+ return len(self.input_paths) * self.patches_per_image
+
+ def _detect_salient_points(self, img_array):
+ """Detect salient points on original image.
+
+ TODO: Add random sampling to training vectors
+ - In addition to salient points, incorporate randomly-located samples
+ - Default: 10% random samples, 90% salient points
+ - Prevents overfitting to only high-gradient regions
+ - Improves generalization across entire image
+ - Configurable via --random-sample-percent parameter
+ """
+ gray = cv2.cvtColor((img_array * 255).astype(np.uint8), cv2.COLOR_RGB2GRAY)
+ h, w = gray.shape
+ half_patch = self.patch_size // 2
+
+ corners = None
+ if self.detector == 'harris':
+ corners = cv2.goodFeaturesToTrack(gray, self.patches_per_image * 2,
+ qualityLevel=0.01, minDistance=half_patch)
+ elif self.detector == 'fast':
+ fast = cv2.FastFeatureDetector_create(threshold=20)
+ keypoints = fast.detect(gray, None)
+ corners = np.array([[kp.pt[0], kp.pt[1]] for kp in keypoints[:self.patches_per_image * 2]])
+ corners = corners.reshape(-1, 1, 2) if len(corners) > 0 else None
+ elif self.detector == 'shi-tomasi':
+ corners = cv2.goodFeaturesToTrack(gray, self.patches_per_image * 2,
+ qualityLevel=0.01, minDistance=half_patch,
+ useHarrisDetector=False)
+ elif self.detector == 'gradient':
+ grad_x = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=3)
+ grad_y = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=3)
+ gradient_mag = np.sqrt(grad_x**2 + grad_y**2)
+ threshold = np.percentile(gradient_mag, 95)
+ y_coords, x_coords = np.where(gradient_mag > threshold)
+
+ if len(x_coords) > self.patches_per_image * 2:
+ indices = np.random.choice(len(x_coords), self.patches_per_image * 2, replace=False)
+ x_coords = x_coords[indices]
+ y_coords = y_coords[indices]
+
+ corners = np.array([[x, y] for x, y in zip(x_coords, y_coords)])
+ corners = corners.reshape(-1, 1, 2) if len(corners) > 0 else None
+
+ # Fallback to random if no corners found
+ if corners is None or len(corners) == 0:
+ x_coords = np.random.randint(half_patch, w - half_patch, self.patches_per_image)
+ y_coords = np.random.randint(half_patch, h - half_patch, self.patches_per_image)
+ corners = np.array([[x, y] for x, y in zip(x_coords, y_coords)])
+ corners = corners.reshape(-1, 1, 2)
+
+ # Filter valid corners
+ valid_corners = []
+ for corner in corners:
+ x, y = int(corner[0][0]), int(corner[0][1])
+ if half_patch <= x < w - half_patch and half_patch <= y < h - half_patch:
+ valid_corners.append((x, y))
+ if len(valid_corners) >= self.patches_per_image:
+ break
+
+ # Fill with random if not enough
+ while len(valid_corners) < self.patches_per_image:
+ x = np.random.randint(half_patch, w - half_patch)
+ y = np.random.randint(half_patch, h - half_patch)
+ valid_corners.append((x, y))
+
+ return valid_corners
+
+ def __getitem__(self, idx):
+ img_idx = idx // self.patches_per_image
+ patch_idx = idx % self.patches_per_image
+
+ # Load original images (no resize)
+ input_img = np.array(Image.open(self.input_paths[img_idx]).convert('RGB')) / 255.0
+ target_pil = Image.open(self.target_paths[img_idx])
+ target_img = np.array(target_pil.convert('RGBA')) / 255.0 # Preserve alpha
+
+ # Detect salient points on original image (use RGB only)
+ salient_points = self._detect_salient_points(input_img)
+ cx, cy = salient_points[patch_idx]
+
+ # Extract patch
+ half_patch = self.patch_size // 2
+ y1, y2 = cy - half_patch, cy + half_patch
+ x1, x2 = cx - half_patch, cx + half_patch
+
+ input_patch = input_img[y1:y2, x1:x2]
+ target_patch = target_img[y1:y2, x1:x2] # RGBA
+
+ # Extract depth from target alpha channel (or default to 1.0)
+ depth = target_patch[:, :, 3] if target_patch.shape[2] == 4 else None
+
+ # Compute static features for patch
+ static_feat = compute_static_features(input_patch.astype(np.float32), depth=depth, mip_level=self.mip_level)
+
+ # Input RGBD (mip 0) - add depth channel
+ input_rgbd = np.concatenate([input_patch, np.zeros((self.patch_size, self.patch_size, 1))], axis=-1)
+
+ # Convert to tensors (C, H, W)
+ input_rgbd = torch.from_numpy(input_rgbd.astype(np.float32)).permute(2, 0, 1)
+ static_feat = torch.from_numpy(static_feat).permute(2, 0, 1)
+ target = torch.from_numpy(target_patch.astype(np.float32)).permute(2, 0, 1) # RGBA from image
+
+ return input_rgbd, static_feat, target
+
+
+class ImagePairDataset(Dataset):
+ """Dataset of input/target image pairs (full-image mode)."""
+
+ def __init__(self, input_dir, target_dir, target_size=(256, 256), mip_level=0):
+ self.input_paths = sorted(Path(input_dir).glob("*.png"))
+ self.target_paths = sorted(Path(target_dir).glob("*.png"))
+ self.target_size = target_size
+ self.mip_level = mip_level
+ assert len(self.input_paths) == len(self.target_paths), \
+ f"Mismatch: {len(self.input_paths)} inputs vs {len(self.target_paths)} targets"
+
+ def __len__(self):
+ return len(self.input_paths)
+
+ def __getitem__(self, idx):
+ # Load and resize images to fixed size
+ input_pil = Image.open(self.input_paths[idx]).convert('RGB')
+ target_pil = Image.open(self.target_paths[idx])
+
+ # Resize to target size
+ input_pil = input_pil.resize(self.target_size, Image.LANCZOS)
+ target_pil = target_pil.resize(self.target_size, Image.LANCZOS)
+
+ input_img = np.array(input_pil) / 255.0
+ target_img = np.array(target_pil.convert('RGBA')) / 255.0 # Preserve alpha
+
+ # Extract depth from target alpha channel (or default to 1.0)
+ depth = target_img[:, :, 3] if target_img.shape[2] == 4 else None
+
+ # Compute static features
+ static_feat = compute_static_features(input_img.astype(np.float32), depth=depth, mip_level=self.mip_level)
+
+ # Input RGBD (mip 0) - add depth channel
+ h, w = input_img.shape[:2]
+ input_rgbd = np.concatenate([input_img, np.zeros((h, w, 1))], axis=-1)
+
+ # Convert to tensors (C, H, W)
+ input_rgbd = torch.from_numpy(input_rgbd.astype(np.float32)).permute(2, 0, 1)
+ static_feat = torch.from_numpy(static_feat).permute(2, 0, 1)
+ target = torch.from_numpy(target_img.astype(np.float32)).permute(2, 0, 1) # RGBA from image
+
+ return input_rgbd, static_feat, target
+
+
+def train(args):
+ """Train CNN v2 model."""
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
+ print(f"Training on {device}")
+
+ # Create dataset (patch-based or full-image)
+ if args.full_image:
+ print(f"Mode: Full-image (resized to {args.image_size}x{args.image_size})")
+ target_size = (args.image_size, args.image_size)
+ dataset = ImagePairDataset(args.input, args.target, target_size=target_size, mip_level=args.mip_level)
+ dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=True)
+ else:
+ print(f"Mode: Patch-based ({args.patch_size}x{args.patch_size} patches)")
+ dataset = PatchDataset(args.input, args.target,
+ patch_size=args.patch_size,
+ patches_per_image=args.patches_per_image,
+ detector=args.detector,
+ mip_level=args.mip_level)
+ dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=True)
+
+ # Parse kernel sizes
+ kernel_sizes = [int(k) for k in args.kernel_sizes.split(',')]
+ if len(kernel_sizes) == 1:
+ kernel_sizes = kernel_sizes * args.num_layers
+ else:
+ # When multiple kernel sizes provided, derive num_layers from list length
+ args.num_layers = len(kernel_sizes)
+
+ # Create model
+ model = CNNv2(kernel_sizes=kernel_sizes, num_layers=args.num_layers).to(device)
+ total_params = sum(p.numel() for p in model.parameters())
+ kernel_desc = ','.join(map(str, kernel_sizes))
+ print(f"Model: {args.num_layers} layers, kernel sizes [{kernel_desc}], {total_params} weights")
+ print(f"Using mip level {args.mip_level} for p0-p3 features")
+
+ # Optimizer and loss
+ optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
+ criterion = nn.MSELoss()
+
+ # Training loop
+ print(f"\nTraining for {args.epochs} epochs...")
+ start_time = time.time()
+
+ for epoch in range(1, args.epochs + 1):
+ model.train()
+ epoch_loss = 0.0
+
+ for input_rgbd, static_feat, target in dataloader:
+ input_rgbd = input_rgbd.to(device)
+ static_feat = static_feat.to(device)
+ target = target.to(device)
+
+ optimizer.zero_grad()
+ output = model(input_rgbd, static_feat)
+
+ # Compute loss (grayscale or RGBA)
+ if args.grayscale_loss:
+ # Convert RGBA to grayscale: Y = 0.299*R + 0.587*G + 0.114*B
+ output_gray = 0.299 * output[:, 0:1] + 0.587 * output[:, 1:2] + 0.114 * output[:, 2:3]
+ target_gray = 0.299 * target[:, 0:1] + 0.587 * target[:, 1:2] + 0.114 * target[:, 2:3]
+ loss = criterion(output_gray, target_gray)
+ else:
+ loss = criterion(output, target)
+
+ loss.backward()
+ optimizer.step()
+
+ epoch_loss += loss.item()
+
+ avg_loss = epoch_loss / len(dataloader)
+
+ # Print loss at every epoch (overwrite line with \r)
+ elapsed = time.time() - start_time
+ print(f"\rEpoch {epoch:4d}/{args.epochs} | Loss: {avg_loss:.6f} | Time: {elapsed:.1f}s", end='', flush=True)
+
+ # Save checkpoint
+ if args.checkpoint_every > 0 and epoch % args.checkpoint_every == 0:
+ print() # Newline before checkpoint message
+ checkpoint_path = Path(args.checkpoint_dir) / f"checkpoint_epoch_{epoch}.pth"
+ checkpoint_path.parent.mkdir(parents=True, exist_ok=True)
+ torch.save({
+ 'epoch': epoch,
+ 'model_state_dict': model.state_dict(),
+ 'optimizer_state_dict': optimizer.state_dict(),
+ 'loss': avg_loss,
+ 'config': {
+ 'kernel_sizes': kernel_sizes,
+ 'num_layers': args.num_layers,
+ 'mip_level': args.mip_level,
+ 'grayscale_loss': args.grayscale_loss,
+ 'features': ['p0', 'p1', 'p2', 'p3', 'uv.x', 'uv.y', 'sin20_y', 'bias']
+ }
+ }, checkpoint_path)
+ print(f" → Saved checkpoint: {checkpoint_path}")
+
+ # Always save final checkpoint
+ print() # Newline after training
+ final_checkpoint = Path(args.checkpoint_dir) / f"checkpoint_epoch_{args.epochs}.pth"
+ final_checkpoint.parent.mkdir(parents=True, exist_ok=True)
+ torch.save({
+ 'epoch': args.epochs,
+ 'model_state_dict': model.state_dict(),
+ 'optimizer_state_dict': optimizer.state_dict(),
+ 'loss': avg_loss,
+ 'config': {
+ 'kernel_sizes': kernel_sizes,
+ 'num_layers': args.num_layers,
+ 'mip_level': args.mip_level,
+ 'grayscale_loss': args.grayscale_loss,
+ 'features': ['p0', 'p1', 'p2', 'p3', 'uv.x', 'uv.y', 'sin20_y', 'bias']
+ }
+ }, final_checkpoint)
+ print(f" → Saved final checkpoint: {final_checkpoint}")
+
+ print(f"\nTraining complete! Total time: {time.time() - start_time:.1f}s")
+ return model
+
+
+def main():
+ parser = argparse.ArgumentParser(description='Train CNN v2 with parametric static features')
+ parser.add_argument('--input', type=str, required=True, help='Input images directory')
+ parser.add_argument('--target', type=str, required=True, help='Target images directory')
+
+ # Training mode
+ parser.add_argument('--full-image', action='store_true',
+ help='Use full-image mode (resize all images)')
+ parser.add_argument('--image-size', type=int, default=256,
+ help='Full-image mode: resize to this size (default: 256)')
+
+ # Patch-based mode (default)
+ parser.add_argument('--patch-size', type=int, default=32,
+ help='Patch mode: patch size (default: 32)')
+ parser.add_argument('--patches-per-image', type=int, default=64,
+ help='Patch mode: patches per image (default: 64)')
+ parser.add_argument('--detector', type=str, default='harris',
+ choices=['harris', 'fast', 'shi-tomasi', 'gradient'],
+ help='Patch mode: salient point detector (default: harris)')
+ # TODO: Add --random-sample-percent parameter (default: 10)
+ # Mix salient points with random samples for better generalization
+
+ # Model architecture
+ parser.add_argument('--kernel-sizes', type=str, default='3',
+ help='Comma-separated kernel sizes per layer (e.g., "3,5,3"), single value replicates (default: 3)')
+ parser.add_argument('--num-layers', type=int, default=3,
+ help='Number of CNN layers (default: 3)')
+ parser.add_argument('--mip-level', type=int, default=0, choices=[0, 1, 2, 3],
+ help='Mip level for p0-p3 features: 0=original, 1=half, 2=quarter, 3=eighth (default: 0)')
+
+ # Training parameters
+ parser.add_argument('--epochs', type=int, default=5000, help='Training epochs')
+ parser.add_argument('--batch-size', type=int, default=16, help='Batch size')
+ parser.add_argument('--lr', type=float, default=1e-3, help='Learning rate')
+ parser.add_argument('--grayscale-loss', action='store_true',
+ help='Compute loss on grayscale (Y = 0.299*R + 0.587*G + 0.114*B) instead of RGBA')
+ parser.add_argument('--checkpoint-dir', type=str, default='checkpoints',
+ help='Checkpoint directory')
+ parser.add_argument('--checkpoint-every', type=int, default=1000,
+ help='Save checkpoint every N epochs (0 = disable)')
+
+ args = parser.parse_args()
+ train(args)
+
+
+if __name__ == '__main__':
+ main()