summaryrefslogtreecommitdiff
path: root/cnn_v2/training/export_cnn_v2_shader.py
diff options
context:
space:
mode:
Diffstat (limited to 'cnn_v2/training/export_cnn_v2_shader.py')
-rwxr-xr-xcnn_v2/training/export_cnn_v2_shader.py218
1 files changed, 218 insertions, 0 deletions
diff --git a/cnn_v2/training/export_cnn_v2_shader.py b/cnn_v2/training/export_cnn_v2_shader.py
new file mode 100755
index 0000000..8692a62
--- /dev/null
+++ b/cnn_v2/training/export_cnn_v2_shader.py
@@ -0,0 +1,218 @@
+#!/usr/bin/env python3
+"""CNN v2 Shader Export Script - Uniform 12D→4D Architecture
+
+Converts PyTorch checkpoints to WGSL compute shaders with f16 weights.
+Generates one shader per layer with embedded weight arrays.
+
+Note: Storage buffer approach (export_cnn_v2_weights.py) is preferred for size.
+ This script is for debugging/testing with per-layer shaders.
+"""
+
+import argparse
+import numpy as np
+import torch
+from pathlib import Path
+
+# Path resolution for running from any directory
+SCRIPT_DIR = Path(__file__).parent
+PROJECT_ROOT = SCRIPT_DIR.parent.parent
+
+
+def export_layer_shader(layer_idx, weights, kernel_size, output_dir, mip_level=0, is_output_layer=False):
+ """Generate WGSL compute shader for a single CNN layer.
+
+ Args:
+ layer_idx: Layer index (0, 1, 2, ...)
+ weights: (4, 12, k, k) weight tensor (uniform 12D→4D)
+ kernel_size: Kernel size (3, 5, etc.)
+ output_dir: Output directory path
+ mip_level: Mip level used for p0-p3 (0=original, 1=half, etc.)
+ is_output_layer: True if this is the final RGBA output layer
+ """
+ weights_flat = weights.flatten()
+ weights_f16 = weights_flat.astype(np.float16)
+ weights_f32 = weights_f16.astype(np.float32) # WGSL stores as f32 literals
+
+ # Format weights as WGSL array
+ weights_str = ",\n ".join(
+ ", ".join(f"{w:.6f}" for w in weights_f32[i:i+8])
+ for i in range(0, len(weights_f32), 8)
+ )
+
+ radius = kernel_size // 2
+ if is_output_layer:
+ activation = "output[c] = clamp(sum, 0.0, 1.0); // Output layer"
+ elif layer_idx == 0:
+ activation = "output[c] = clamp(sum, 0.0, 1.0); // Layer 0: clamp [0,1]"
+ else:
+ activation = "output[c] = max(0.0, sum); // Middle layers: ReLU"
+
+ shader_code = f"""// CNN v2 Layer {layer_idx} - Auto-generated (uniform 12D→4D)
+// Kernel: {kernel_size}×{kernel_size}, In: 12D (4 prev + 8 static), Out: 4D
+// Mip level: {mip_level} (p0-p3 features)
+
+const KERNEL_SIZE: u32 = {kernel_size}u;
+const IN_CHANNELS: u32 = 12u; // 4 (input/prev) + 8 (static)
+const OUT_CHANNELS: u32 = 4u; // Uniform output
+const KERNEL_RADIUS: i32 = {radius};
+
+// Weights quantized to float16 (stored as f32 in WGSL)
+const weights: array<f32, {len(weights_f32)}> = array(
+ {weights_str}
+);
+
+@group(0) @binding(0) var static_features: texture_2d<u32>;
+@group(0) @binding(1) var layer_input: texture_2d<u32>;
+@group(0) @binding(2) var output_tex: texture_storage_2d<rgba32uint, write>;
+
+fn unpack_static_features(coord: vec2<i32>) -> array<f32, 8> {{
+ let packed = textureLoad(static_features, coord, 0);
+ let v0 = unpack2x16float(packed.x);
+ let v1 = unpack2x16float(packed.y);
+ let v2 = unpack2x16float(packed.z);
+ let v3 = unpack2x16float(packed.w);
+ return array<f32, 8>(v0.x, v0.y, v1.x, v1.y, v2.x, v2.y, v3.x, v3.y);
+}}
+
+fn unpack_layer_channels(coord: vec2<i32>) -> vec4<f32> {{
+ let packed = textureLoad(layer_input, coord, 0);
+ let v0 = unpack2x16float(packed.x);
+ let v1 = unpack2x16float(packed.y);
+ return vec4<f32>(v0.x, v0.y, v1.x, v1.y);
+}}
+
+fn pack_channels(values: vec4<f32>) -> vec4<u32> {{
+ return vec4<u32>(
+ pack2x16float(vec2<f32>(values.x, values.y)),
+ pack2x16float(vec2<f32>(values.z, values.w)),
+ 0u, // Unused
+ 0u // Unused
+ );
+}}
+
+@compute @workgroup_size(8, 8)
+fn main(@builtin(global_invocation_id) id: vec3<u32>) {{
+ let coord = vec2<i32>(id.xy);
+ let dims = textureDimensions(static_features);
+
+ if (coord.x >= i32(dims.x) || coord.y >= i32(dims.y)) {{
+ return;
+ }}
+
+ // Load static features (always available)
+ let static_feat = unpack_static_features(coord);
+
+ // Convolution: 12D input (4 prev + 8 static) → 4D output
+ var output: vec4<f32> = vec4<f32>(0.0);
+ for (var c: u32 = 0u; c < 4u; c++) {{
+ var sum: f32 = 0.0;
+
+ for (var ky: i32 = -KERNEL_RADIUS; ky <= KERNEL_RADIUS; ky++) {{
+ for (var kx: i32 = -KERNEL_RADIUS; kx <= KERNEL_RADIUS; kx++) {{
+ let sample_coord = coord + vec2<i32>(kx, ky);
+
+ // Border handling (clamp)
+ let clamped = vec2<i32>(
+ clamp(sample_coord.x, 0, i32(dims.x) - 1),
+ clamp(sample_coord.y, 0, i32(dims.y) - 1)
+ );
+
+ // Load features at this spatial location
+ let static_local = unpack_static_features(clamped);
+ let layer_local = unpack_layer_channels(clamped); // 4D
+
+ // Weight index calculation
+ let ky_idx = u32(ky + KERNEL_RADIUS);
+ let kx_idx = u32(kx + KERNEL_RADIUS);
+ let spatial_idx = ky_idx * KERNEL_SIZE + kx_idx;
+
+ // Accumulate: previous/input channels (4D)
+ for (var i: u32 = 0u; i < 4u; i++) {{
+ let w_idx = c * 12u * KERNEL_SIZE * KERNEL_SIZE +
+ i * KERNEL_SIZE * KERNEL_SIZE + spatial_idx;
+ sum += weights[w_idx] * layer_local[i];
+ }}
+
+ // Accumulate: static features (8D)
+ for (var i: u32 = 0u; i < 8u; i++) {{
+ let w_idx = c * 12u * KERNEL_SIZE * KERNEL_SIZE +
+ (4u + i) * KERNEL_SIZE * KERNEL_SIZE + spatial_idx;
+ sum += weights[w_idx] * static_local[i];
+ }}
+ }}
+ }}
+
+ {activation}
+ }}
+
+ // Pack and store
+ textureStore(output_tex, coord, pack_channels(output));
+}}
+"""
+
+ output_path = Path(output_dir) / "cnn_v2" / f"cnn_v2_layer_{layer_idx}.wgsl"
+ output_path.write_text(shader_code)
+ print(f" → {output_path}")
+
+
+def export_checkpoint(checkpoint_path, output_dir):
+ """Export PyTorch checkpoint to WGSL shaders.
+
+ Args:
+ checkpoint_path: Path to .pth checkpoint
+ output_dir: Output directory for shaders
+ """
+ print(f"Loading checkpoint: {checkpoint_path}")
+ checkpoint = torch.load(checkpoint_path, map_location='cpu')
+
+ state_dict = checkpoint['model_state_dict']
+ config = checkpoint['config']
+
+ kernel_size = config.get('kernel_size', 3)
+ num_layers = config.get('num_layers', 3)
+ mip_level = config.get('mip_level', 0)
+
+ print(f"Configuration:")
+ print(f" Kernel size: {kernel_size}×{kernel_size}")
+ print(f" Layers: {num_layers}")
+ print(f" Mip level: {mip_level} (p0-p3 features)")
+ print(f" Architecture: uniform 12D→4D")
+
+ output_dir = Path(output_dir)
+ output_dir.mkdir(parents=True, exist_ok=True)
+
+ print(f"\nExporting shaders to {output_dir}/")
+
+ # All layers uniform: 12D→4D
+ for i in range(num_layers):
+ layer_key = f'layers.{i}.weight'
+ if layer_key not in state_dict:
+ raise ValueError(f"Missing weights for layer {i}: {layer_key}")
+
+ layer_weights = state_dict[layer_key].detach().numpy()
+ is_output = (i == num_layers - 1)
+
+ export_layer_shader(
+ layer_idx=i,
+ weights=layer_weights,
+ kernel_size=kernel_size,
+ output_dir=output_dir,
+ mip_level=mip_level,
+ is_output_layer=is_output
+ )
+
+ print(f"\nExport complete! Generated {num_layers} shader files.")
+
+
+def main():
+ parser = argparse.ArgumentParser(description='Export CNN v2 checkpoint to WGSL shaders')
+ parser.add_argument('checkpoint', type=str, help='Path to checkpoint .pth file')
+ parser.add_argument('--output-dir', type=str, default=str(PROJECT_ROOT / 'workspaces/main/shaders'),
+ help='Output directory for shaders')
+
+ args = parser.parse_args()
+ export_checkpoint(args.checkpoint, args.output_dir)
+
+
+if __name__ == '__main__':
+ main()