diff options
Diffstat (limited to 'cnn_v1/training')
| -rwxr-xr-x | cnn_v1/training/train_cnn.py | 943 |
1 files changed, 943 insertions, 0 deletions
diff --git a/cnn_v1/training/train_cnn.py b/cnn_v1/training/train_cnn.py new file mode 100755 index 0000000..4171dcb --- /dev/null +++ b/cnn_v1/training/train_cnn.py @@ -0,0 +1,943 @@ +#!/usr/bin/env python3 +""" +CNN Training Script for Image-to-Image Transformation + +Trains a convolutional neural network on multiple input/target image pairs. + +Usage: + # Training + python3 train_cnn.py --input input_dir/ --target target_dir/ [options] + + # Inference (generate ground truth) + python3 train_cnn.py --infer image.png --export-only checkpoint.pth --output result.png + +Example: + python3 train_cnn.py --input ./input --target ./output --layers 3 --epochs 100 + python3 train_cnn.py --infer input.png --export-only checkpoints/checkpoint_epoch_10000.pth +""" + +import torch +import torch.nn as nn +import torch.optim as optim +from torch.utils.data import Dataset, DataLoader +from torchvision import transforms +from PIL import Image +import numpy as np +import cv2 +import os +import sys +import argparse +import glob + + +class ImagePairDataset(Dataset): + """Dataset for loading matching input/target image pairs""" + + def __init__(self, input_dir, target_dir, transform=None): + self.input_dir = input_dir + self.target_dir = target_dir + self.transform = transform + + # Find all images in input directory + input_patterns = ['*.png', '*.jpg', '*.jpeg', '*.PNG', '*.JPG', '*.JPEG'] + self.image_pairs = [] + + for pattern in input_patterns: + input_files = glob.glob(os.path.join(input_dir, pattern)) + for input_path in input_files: + filename = os.path.basename(input_path) + # Try to find matching target with same name but any supported extension + target_path = None + for ext in ['png', 'jpg', 'jpeg', 'PNG', 'JPG', 'JPEG']: + base_name = os.path.splitext(filename)[0] + candidate = os.path.join(target_dir, f"{base_name}.{ext}") + if os.path.exists(candidate): + target_path = candidate + break + + if target_path: + self.image_pairs.append((input_path, target_path)) + + if not self.image_pairs: + raise ValueError(f"No matching image pairs found between {input_dir} and {target_dir}") + + print(f"Found {len(self.image_pairs)} matching image pairs") + + def __len__(self): + return len(self.image_pairs) + + def __getitem__(self, idx): + input_path, target_path = self.image_pairs[idx] + + # Load RGBD input (4 channels: RGB + Depth) + input_img = Image.open(input_path).convert('RGBA') + target_img = Image.open(target_path).convert('RGB') + + if self.transform: + input_img = self.transform(input_img) + target_img = self.transform(target_img) + + return input_img, target_img + + +class PatchDataset(Dataset): + """Dataset for extracting salient patches from image pairs""" + + def __init__(self, input_dir, target_dir, patch_size=32, patches_per_image=64, + detector='harris', transform=None): + self.input_dir = input_dir + self.target_dir = target_dir + self.patch_size = patch_size + self.patches_per_image = patches_per_image + self.detector = detector + self.transform = transform + + # Find all image pairs + input_patterns = ['*.png', '*.jpg', '*.jpeg', '*.PNG', '*.JPG', '*.JPEG'] + self.image_pairs = [] + + for pattern in input_patterns: + input_files = glob.glob(os.path.join(input_dir, pattern)) + for input_path in input_files: + filename = os.path.basename(input_path) + target_path = None + for ext in ['png', 'jpg', 'jpeg', 'PNG', 'JPG', 'JPEG']: + base_name = os.path.splitext(filename)[0] + candidate = os.path.join(target_dir, f"{base_name}.{ext}") + if os.path.exists(candidate): + target_path = candidate + break + + if target_path: + self.image_pairs.append((input_path, target_path)) + + if not self.image_pairs: + raise ValueError(f"No matching image pairs found between {input_dir} and {target_dir}") + + print(f"Found {len(self.image_pairs)} image pairs") + print(f"Extracting {patches_per_image} patches per image using {detector} detector") + print(f"Total patches: {len(self.image_pairs) * patches_per_image}") + + def __len__(self): + return len(self.image_pairs) * self.patches_per_image + + def _detect_salient_points(self, img_array): + """Detect salient points using specified detector""" + gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY) + h, w = gray.shape + half_patch = self.patch_size // 2 + + if self.detector == 'harris': + # Harris corner detection + corners = cv2.goodFeaturesToTrack(gray, self.patches_per_image * 2, + qualityLevel=0.01, minDistance=half_patch) + elif self.detector == 'fast': + # FAST feature detection + fast = cv2.FastFeatureDetector_create(threshold=20) + keypoints = fast.detect(gray, None) + corners = np.array([[kp.pt[0], kp.pt[1]] for kp in keypoints[:self.patches_per_image * 2]]) + corners = corners.reshape(-1, 1, 2) if len(corners) > 0 else None + elif self.detector == 'shi-tomasi': + # Shi-Tomasi corner detection (goodFeaturesToTrack with different params) + corners = cv2.goodFeaturesToTrack(gray, self.patches_per_image * 2, + qualityLevel=0.01, minDistance=half_patch, + useHarrisDetector=False) + elif self.detector == 'gradient': + # High-gradient regions + grad_x = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=3) + grad_y = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=3) + gradient_mag = np.sqrt(grad_x**2 + grad_y**2) + + # Find top gradient locations + threshold = np.percentile(gradient_mag, 95) + y_coords, x_coords = np.where(gradient_mag > threshold) + + if len(x_coords) > self.patches_per_image * 2: + indices = np.random.choice(len(x_coords), self.patches_per_image * 2, replace=False) + x_coords = x_coords[indices] + y_coords = y_coords[indices] + + corners = np.array([[x, y] for x, y in zip(x_coords, y_coords)]) + corners = corners.reshape(-1, 1, 2) if len(corners) > 0 else None + else: + raise ValueError(f"Unknown detector: {self.detector}") + + # Fallback to random if no corners found + if corners is None or len(corners) == 0: + x_coords = np.random.randint(half_patch, w - half_patch, self.patches_per_image) + y_coords = np.random.randint(half_patch, h - half_patch, self.patches_per_image) + corners = np.array([[x, y] for x, y in zip(x_coords, y_coords)]) + corners = corners.reshape(-1, 1, 2) + + # Filter valid corners (within bounds) + valid_corners = [] + for corner in corners: + x, y = int(corner[0][0]), int(corner[0][1]) + if half_patch <= x < w - half_patch and half_patch <= y < h - half_patch: + valid_corners.append((x, y)) + if len(valid_corners) >= self.patches_per_image: + break + + # Fill with random if not enough + while len(valid_corners) < self.patches_per_image: + x = np.random.randint(half_patch, w - half_patch) + y = np.random.randint(half_patch, h - half_patch) + valid_corners.append((x, y)) + + return valid_corners + + def __getitem__(self, idx): + img_idx = idx // self.patches_per_image + patch_idx = idx % self.patches_per_image + + input_path, target_path = self.image_pairs[img_idx] + + # Load images + input_img = Image.open(input_path).convert('RGBA') + target_img = Image.open(target_path).convert('RGB') + + # Detect salient points (use input image for detection) + input_array = np.array(input_img)[:, :, :3] # Use RGB for detection + corners = self._detect_salient_points(input_array) + + # Extract patch at specified index + x, y = corners[patch_idx] + half_patch = self.patch_size // 2 + + # Crop patches + input_patch = input_img.crop((x - half_patch, y - half_patch, + x + half_patch, y + half_patch)) + target_patch = target_img.crop((x - half_patch, y - half_patch, + x + half_patch, y + half_patch)) + + if self.transform: + input_patch = self.transform(input_patch) + target_patch = self.transform(target_patch) + + return input_patch, target_patch + + +class SimpleCNN(nn.Module): + """CNN for RGBD→RGB with 7-channel input (RGBD + UV + gray) + + Internally computes grayscale, expands to 3-channel RGB output. + """ + + def __init__(self, num_layers=1, kernel_sizes=None): + super(SimpleCNN, self).__init__() + + if kernel_sizes is None: + kernel_sizes = [3] * num_layers + + assert len(kernel_sizes) == num_layers, "kernel_sizes must match num_layers" + + self.kernel_sizes = kernel_sizes + self.layers = nn.ModuleList() + + for i, kernel_size in enumerate(kernel_sizes): + padding = kernel_size // 2 + if i < num_layers - 1: + # Inner layers: 7→4 (RGBD output) + self.layers.append(nn.Conv2d(7, 4, kernel_size=kernel_size, padding=padding, bias=True)) + else: + # Final layer: 7→1 (grayscale output) + self.layers.append(nn.Conv2d(7, 1, kernel_size=kernel_size, padding=padding, bias=True)) + + def forward(self, x, return_intermediates=False): + # x: [B,4,H,W] - RGBD input (D = 1/z) + B, C, H, W = x.shape + + intermediates = [] if return_intermediates else None + + # Normalize RGBD to [-1,1] + x_norm = (x - 0.5) * 2.0 + + # Compute normalized coordinates [-1,1] + y_coords = torch.linspace(-1, 1, H, device=x.device).view(1,1,H,1).expand(B,1,H,W) + x_coords = torch.linspace(-1, 1, W, device=x.device).view(1,1,1,W).expand(B,1,H,W) + + # Compute grayscale from original RGB (Rec.709) and normalize to [-1,1] + gray = 0.2126*x[:,0:1] + 0.7152*x[:,1:2] + 0.0722*x[:,2:3] # [B,1,H,W] in [0,1] + gray = (gray - 0.5) * 2.0 # [-1,1] + + # Layer 0 + layer0_input = torch.cat([x_norm, x_coords, y_coords, gray], dim=1) # [B,7,H,W] + out = self.layers[0](layer0_input) # [B,4,H,W] + out = torch.tanh(out) # [-1,1] + if return_intermediates: + intermediates.append(out.clone()) + + # Inner layers + for i in range(1, len(self.layers)-1): + layer_input = torch.cat([out, x_coords, y_coords, gray], dim=1) + out = self.layers[i](layer_input) + out = torch.tanh(out) + if return_intermediates: + intermediates.append(out.clone()) + + # Final layer (grayscale→RGB) + final_input = torch.cat([out, x_coords, y_coords, gray], dim=1) + out = self.layers[-1](final_input) # [B,1,H,W] grayscale + out = torch.sigmoid(out) # Map to [0,1] with smooth gradients + final_out = out.expand(-1, 3, -1, -1) # [B,3,H,W] expand to RGB + + if return_intermediates: + return final_out, intermediates + return final_out + + +def generate_layer_shader(output_path, num_layers, kernel_sizes): + """Generate cnn_layer.wgsl with proper layer switches""" + + with open(output_path, 'w') as f: + f.write("// CNN layer shader - uses modular convolution snippets\n") + f.write("// Supports multi-pass rendering with residual connections\n") + f.write("// DO NOT EDIT - Generated by train_cnn.py\n\n") + f.write("@group(0) @binding(0) var smplr: sampler;\n") + f.write("@group(0) @binding(1) var txt: texture_2d<f32>;\n\n") + f.write("#include \"common_uniforms\"\n") + f.write("#include \"cnn_activation\"\n") + + # Include necessary conv functions + conv_sizes = set(kernel_sizes) + for ks in sorted(conv_sizes): + f.write(f"#include \"cnn_conv{ks}x{ks}\"\n") + f.write("#include \"cnn_weights_generated\"\n\n") + + f.write("struct CNNLayerParams {\n") + f.write(" layer_index: i32,\n") + f.write(" blend_amount: f32,\n") + f.write(" _pad: vec2<f32>,\n") + f.write("};\n\n") + f.write("@group(0) @binding(2) var<uniform> uniforms: CommonUniforms;\n") + f.write("@group(0) @binding(3) var<uniform> params: CNNLayerParams;\n") + f.write("@group(0) @binding(4) var original_input: texture_2d<f32>;\n\n") + f.write("@vertex fn vs_main(@builtin(vertex_index) i: u32) -> @builtin(position) vec4<f32> {\n") + f.write(" var pos = array<vec2<f32>, 3>(\n") + f.write(" vec2<f32>(-1.0, -1.0), vec2<f32>(3.0, -1.0), vec2<f32>(-1.0, 3.0)\n") + f.write(" );\n") + f.write(" return vec4<f32>(pos[i], 0.0, 1.0);\n") + f.write("}\n\n") + f.write("@fragment fn fs_main(@builtin(position) p: vec4<f32>) -> @location(0) vec4<f32> {\n") + f.write(" // Match PyTorch linspace\n") + f.write(" let uv = (p.xy - 0.5) / (uniforms.resolution - 1.0);\n") + f.write(" let original_raw = textureSample(original_input, smplr, uv);\n") + f.write(" let original = (original_raw - 0.5) * 2.0; // Normalize to [-1,1]\n") + f.write(" let gray = (dot(original_raw.rgb, vec3<f32>(0.2126, 0.7152, 0.0722)) - 0.5) * 2.0;\n") + f.write(" var result = vec4<f32>(0.0);\n\n") + + # Generate layer switches + for layer_idx in range(num_layers): + is_final = layer_idx == num_layers - 1 + ks = kernel_sizes[layer_idx] + conv_fn = f"cnn_conv{ks}x{ks}_7to4" if not is_final else f"cnn_conv{ks}x{ks}_7to1" + + if layer_idx == 0: + conv_fn_src = f"cnn_conv{ks}x{ks}_7to4_src" + f.write(f" // Layer 0: 7→4 (RGBD output, normalizes [0,1] input)\n") + f.write(f" if (params.layer_index == {layer_idx}) {{\n") + f.write(f" result = {conv_fn_src}(txt, smplr, uv, uniforms.resolution, weights_layer{layer_idx});\n") + f.write(f" result = cnn_tanh(result);\n") + f.write(f" }}\n") + elif not is_final: + f.write(f" else if (params.layer_index == {layer_idx}) {{\n") + f.write(f" result = {conv_fn}(txt, smplr, uv, uniforms.resolution, gray, weights_layer{layer_idx});\n") + f.write(f" result = cnn_tanh(result); // Keep in [-1,1]\n") + f.write(f" }}\n") + else: + f.write(f" else if (params.layer_index == {layer_idx}) {{\n") + f.write(f" let sum = {conv_fn}(txt, smplr, uv, uniforms.resolution, gray, weights_layer{layer_idx});\n") + f.write(f" let gray_out = 1.0 / (1.0 + exp(-sum)); // Sigmoid activation\n") + f.write(f" result = vec4<f32>(gray_out, gray_out, gray_out, 1.0);\n") + f.write(f" return mix(original_raw, result, params.blend_amount); // [0,1]\n") + f.write(f" }}\n") + + f.write(" return result; // [-1,1]\n") + f.write("}\n") + + +def export_weights_to_wgsl(model, output_path, kernel_sizes): + """Export trained weights to WGSL format (vec4-optimized)""" + + with open(output_path, 'w') as f: + f.write("// Auto-generated CNN weights (vec4-optimized)\n") + f.write("// DO NOT EDIT - Generated by train_cnn.py\n\n") + + for i, layer in enumerate(model.layers): + weights = layer.weight.data.cpu().numpy() + bias = layer.bias.data.cpu().numpy() + out_ch, in_ch, kh, kw = weights.shape + num_positions = kh * kw + + is_final = (i == len(model.layers) - 1) + + if is_final: + # Final layer: 7→1, structure: array<vec4<f32>, 18> (9 pos × 2 vec4) + # Input: [rgba, uv_gray_1] → 2 vec4s per position + f.write(f"const weights_layer{i}: array<vec4<f32>, {num_positions * 2}> = array(\n") + for pos in range(num_positions): + row, col = pos // kw, pos % kw + # First vec4: [w0, w1, w2, w3] (rgba) + v0 = [f"{weights[0, in_c, row, col]:.6f}" for in_c in range(4)] + # Second vec4: [w4, w5, w6, bias] (uv, gray, 1) + v1 = [f"{weights[0, in_c, row, col]:.6f}" for in_c in range(4, 7)] + v1.append(f"{bias[0] / num_positions:.6f}") + f.write(f" vec4<f32>({', '.join(v0)}),\n") + f.write(f" vec4<f32>({', '.join(v1)})") + f.write(",\n" if pos < num_positions-1 else "\n") + f.write(");\n\n") + else: + # Inner layers: 7→4, structure: array<vec4<f32>, 72> (36 entries × 2 vec4) + # Each filter: 2 vec4s for [rgba][uv_gray_1] inputs + num_vec4s = num_positions * 4 * 2 + f.write(f"const weights_layer{i}: array<vec4<f32>, {num_vec4s}> = array(\n") + for pos in range(num_positions): + row, col = pos // kw, pos % kw + for out_c in range(4): + # First vec4: [w0, w1, w2, w3] (rgba) + v0 = [f"{weights[out_c, in_c, row, col]:.6f}" for in_c in range(4)] + # Second vec4: [w4, w5, w6, bias] (uv, gray, 1) + v1 = [f"{weights[out_c, in_c, row, col]:.6f}" for in_c in range(4, 7)] + v1.append(f"{bias[out_c] / num_positions:.6f}") + idx = (pos * 4 + out_c) * 2 + f.write(f" vec4<f32>({', '.join(v0)}),\n") + f.write(f" vec4<f32>({', '.join(v1)})") + f.write(",\n" if idx < num_vec4s-2 else "\n") + f.write(");\n\n") + + +def generate_conv_base_function(kernel_size, output_path): + """Generate cnn_conv{K}x{K}_7to4() function for inner layers (vec4-optimized)""" + + k = kernel_size + num_positions = k * k + radius = k // 2 + + with open(output_path, 'a') as f: + f.write(f"\n// Inner layers: 7→4 channels (vec4-optimized)\n") + f.write(f"// Assumes 'tex' is already normalized to [-1,1]\n") + f.write(f"fn cnn_conv{k}x{k}_7to4(\n") + f.write(f" tex: texture_2d<f32>,\n") + f.write(f" samp: sampler,\n") + f.write(f" uv: vec2<f32>,\n") + f.write(f" resolution: vec2<f32>,\n") + f.write(f" gray: f32,\n") + f.write(f" weights: array<vec4<f32>, {num_positions * 8}>\n") + f.write(f") -> vec4<f32> {{\n") + f.write(f" let step = 1.0 / resolution;\n") + f.write(f" let uv_norm = (uv - 0.5) * 2.0;\n\n") + f.write(f" var sum = vec4<f32>(0.0);\n") + f.write(f" var pos = 0;\n\n") + + # Convolution loop + f.write(f" for (var dy = -{radius}; dy <= {radius}; dy++) {{\n") + f.write(f" for (var dx = -{radius}; dx <= {radius}; dx++) {{\n") + f.write(f" let offset = vec2<f32>(f32(dx), f32(dy)) * step;\n") + f.write(f" let rgbd = textureSample(tex, samp, uv + offset);\n") + f.write(f" let in1 = vec4<f32>(uv_norm, gray, 1.0);\n\n") + + # Accumulate + f.write(f" sum.r += dot(weights[pos+0], rgbd) + dot(weights[pos+1], in1);\n") + f.write(f" sum.g += dot(weights[pos+2], rgbd) + dot(weights[pos+3], in1);\n") + f.write(f" sum.b += dot(weights[pos+4], rgbd) + dot(weights[pos+5], in1);\n") + f.write(f" sum.a += dot(weights[pos+6], rgbd) + dot(weights[pos+7], in1);\n") + f.write(f" pos += 8;\n") + f.write(f" }}\n") + f.write(f" }}\n\n") + + f.write(f" return sum;\n") + f.write(f"}}\n") + + +def generate_conv_src_function(kernel_size, output_path): + """Generate cnn_conv{K}x{K}_7to4_src() function for layer 0 (vec4-optimized)""" + + k = kernel_size + num_positions = k * k + radius = k // 2 + + with open(output_path, 'a') as f: + f.write(f"\n// Source layer: 7→4 channels (vec4-optimized)\n") + f.write(f"// Normalizes [0,1] input to [-1,1] internally\n") + f.write(f"fn cnn_conv{k}x{k}_7to4_src(\n") + f.write(f" tex: texture_2d<f32>,\n") + f.write(f" samp: sampler,\n") + f.write(f" uv: vec2<f32>,\n") + f.write(f" resolution: vec2<f32>,\n") + f.write(f" weights: array<vec4<f32>, {num_positions * 8}>\n") + f.write(f") -> vec4<f32> {{\n") + f.write(f" let step = 1.0 / resolution;\n\n") + + # Normalize center pixel for gray channel + f.write(f" let original = (textureSample(tex, samp, uv) - 0.5) * 2.0;\n") + f.write(f" let gray = dot(original.rgb, vec3<f32>(0.2126, 0.7152, 0.0722));\n") + f.write(f" let uv_norm = (uv - 0.5) * 2.0;\n") + f.write(f" let in1 = vec4<f32>(uv_norm, gray, 1.0);\n\n") + + f.write(f" var sum = vec4<f32>(0.0);\n") + f.write(f" var pos = 0;\n\n") + + # Convolution loop + f.write(f" for (var dy = -{radius}; dy <= {radius}; dy++) {{\n") + f.write(f" for (var dx = -{radius}; dx <= {radius}; dx++) {{\n") + f.write(f" let offset = vec2<f32>(f32(dx), f32(dy)) * step;\n") + f.write(f" let rgbd = (textureSample(tex, samp, uv + offset) - 0.5) * 2.0;\n\n") + + # Accumulate with dot products (unrolled) + f.write(f" sum.r += dot(weights[pos+0], rgbd) + dot(weights[pos+1], in1);\n") + f.write(f" sum.g += dot(weights[pos+2], rgbd) + dot(weights[pos+3], in1);\n") + f.write(f" sum.b += dot(weights[pos+4], rgbd) + dot(weights[pos+5], in1);\n") + f.write(f" sum.a += dot(weights[pos+6], rgbd) + dot(weights[pos+7], in1);\n") + f.write(f" pos += 8;\n") + f.write(f" }}\n") + f.write(f" }}\n\n") + + f.write(f" return sum;\n") + f.write(f"}}\n") + + +def generate_conv_final_function(kernel_size, output_path): + """Generate cnn_conv{K}x{K}_7to1() function for final layer (vec4-optimized)""" + + k = kernel_size + num_positions = k * k + radius = k // 2 + + with open(output_path, 'a') as f: + f.write(f"\n// Final layer: 7→1 channel (vec4-optimized)\n") + f.write(f"// Assumes 'tex' is already normalized to [-1,1]\n") + f.write(f"// Returns raw sum (activation applied at call site)\n") + f.write(f"fn cnn_conv{k}x{k}_7to1(\n") + f.write(f" tex: texture_2d<f32>,\n") + f.write(f" samp: sampler,\n") + f.write(f" uv: vec2<f32>,\n") + f.write(f" resolution: vec2<f32>,\n") + f.write(f" gray: f32,\n") + f.write(f" weights: array<vec4<f32>, {num_positions * 2}>\n") + f.write(f") -> f32 {{\n") + f.write(f" let step = 1.0 / resolution;\n") + f.write(f" let uv_norm = (uv - 0.5) * 2.0;\n") + f.write(f" let in1 = vec4<f32>(uv_norm, gray, 1.0);\n\n") + f.write(f" var sum = 0.0;\n") + f.write(f" var pos = 0;\n\n") + + # Convolution loop + f.write(f" for (var dy = -{radius}; dy <= {radius}; dy++) {{\n") + f.write(f" for (var dx = -{radius}; dx <= {radius}; dx++) {{\n") + f.write(f" let offset = vec2<f32>(f32(dx), f32(dy)) * step;\n") + f.write(f" let rgbd = textureSample(tex, samp, uv + offset);\n\n") + + # Accumulate with dot products + f.write(f" sum += dot(weights[pos], rgbd) + dot(weights[pos+1], in1);\n") + f.write(f" pos += 2;\n") + f.write(f" }}\n") + f.write(f" }}\n\n") + + f.write(f" return sum;\n") + f.write(f"}}\n") + + +def train(args): + """Main training loop""" + + # Setup device + device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') + print(f"Using device: {device}") + + # Prepare dataset + if args.patch_size: + # Patch-based training (preserves natural scale) + transform = transforms.Compose([ + transforms.ToTensor(), + ]) + dataset = PatchDataset(args.input, args.target, + patch_size=args.patch_size, + patches_per_image=args.patches_per_image, + detector=args.detector, + transform=transform) + else: + # Full-image training (resize mode) + transform = transforms.Compose([ + transforms.Resize((256, 256)), + transforms.ToTensor(), + ]) + dataset = ImagePairDataset(args.input, args.target, transform=transform) + + dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=True) + + # Parse kernel sizes + kernel_sizes = [int(k) for k in args.kernel_sizes.split(',')] + if len(kernel_sizes) == 1 and args.layers > 1: + kernel_sizes = kernel_sizes * args.layers + + # Create model + model = SimpleCNN(num_layers=args.layers, kernel_sizes=kernel_sizes).to(device) + + # Loss and optimizer + criterion = nn.MSELoss() + optimizer = optim.Adam(model.parameters(), lr=args.learning_rate) + + # Resume from checkpoint + start_epoch = 0 + if args.resume: + if os.path.exists(args.resume): + print(f"Loading checkpoint from {args.resume}...") + checkpoint = torch.load(args.resume, map_location=device) + model.load_state_dict(checkpoint['model_state']) + optimizer.load_state_dict(checkpoint['optimizer_state']) + start_epoch = checkpoint['epoch'] + 1 + print(f"Resumed from epoch {start_epoch}") + else: + print(f"Warning: Checkpoint file '{args.resume}' not found, starting from scratch") + + # Compute valid center region (exclude conv padding borders) + num_layers = args.layers + border = num_layers # Each 3x3 layer needs 1px, accumulates across layers + + # Early stopping setup + loss_history = [] + early_stop_triggered = False + + # Training loop + print(f"\nTraining for {args.epochs} epochs (starting from epoch {start_epoch})...") + print(f"Computing loss on center region only (excluding {border}px border)") + if args.early_stop_patience > 0: + print(f"Early stopping: patience={args.early_stop_patience}, eps={args.early_stop_eps}") + + for epoch in range(start_epoch, args.epochs): + epoch_loss = 0.0 + for batch_idx, (inputs, targets) in enumerate(dataloader): + inputs, targets = inputs.to(device), targets.to(device) + + optimizer.zero_grad() + outputs = model(inputs) + + # Only compute loss on center pixels with valid neighborhoods + if border > 0 and outputs.shape[2] > 2*border and outputs.shape[3] > 2*border: + outputs_center = outputs[:, :, border:-border, border:-border] + targets_center = targets[:, :, border:-border, border:-border] + loss = criterion(outputs_center, targets_center) + else: + loss = criterion(outputs, targets) + + loss.backward() + optimizer.step() + + epoch_loss += loss.item() + + avg_loss = epoch_loss / len(dataloader) + if (epoch + 1) % 10 == 0: + print(f"Epoch [{epoch+1}/{args.epochs}], Loss: {avg_loss:.6f}") + + # Early stopping check + if args.early_stop_patience > 0: + loss_history.append(avg_loss) + if len(loss_history) >= args.early_stop_patience: + oldest_loss = loss_history[-args.early_stop_patience] + loss_change = abs(avg_loss - oldest_loss) + if loss_change < args.early_stop_eps: + print(f"Early stopping triggered at epoch {epoch+1}") + print(f"Loss change over last {args.early_stop_patience} epochs: {loss_change:.8f} < {args.early_stop_eps}") + early_stop_triggered = True + break + + # Save checkpoint + if args.checkpoint_every > 0 and (epoch + 1) % args.checkpoint_every == 0: + checkpoint_dir = args.checkpoint_dir or 'training/checkpoints' + os.makedirs(checkpoint_dir, exist_ok=True) + checkpoint_path = os.path.join(checkpoint_dir, f'checkpoint_epoch_{epoch+1}.pth') + torch.save({ + 'epoch': epoch, + 'model_state': model.state_dict(), + 'optimizer_state': optimizer.state_dict(), + 'loss': avg_loss, + 'kernel_sizes': kernel_sizes, + 'num_layers': args.layers + }, checkpoint_path) + print(f"Saved checkpoint to {checkpoint_path}") + + # Export weights and shader + output_path = args.output or 'workspaces/main/shaders/cnn/cnn_weights_generated.wgsl' + print(f"\nExporting weights to {output_path}...") + os.makedirs(os.path.dirname(output_path), exist_ok=True) + export_weights_to_wgsl(model, output_path, kernel_sizes) + + # Generate layer shader + shader_dir = os.path.dirname(output_path) + shader_path = os.path.join(shader_dir, 'cnn_layer.wgsl') + print(f"Generating layer shader to {shader_path}...") + generate_layer_shader(shader_path, args.layers, kernel_sizes) + + # Generate conv shader files for all kernel sizes + for ks in set(kernel_sizes): + conv_path = os.path.join(shader_dir, f'cnn_conv{ks}x{ks}.wgsl') + + # Create file with header if it doesn't exist + if not os.path.exists(conv_path): + print(f"Creating {conv_path}...") + with open(conv_path, 'w') as f: + f.write(f"// {ks}x{ks} convolution (vec4-optimized)\n") + generate_conv_base_function(ks, conv_path) + generate_conv_src_function(ks, conv_path) + generate_conv_final_function(ks, conv_path) + print(f"Generated complete {conv_path}") + continue + + # File exists, check for missing functions + with open(conv_path, 'r') as f: + content = f.read() + + # Generate base 7to4 if missing + if f"cnn_conv{ks}x{ks}_7to4" not in content: + generate_conv_base_function(ks, conv_path) + print(f"Added base 7to4 to {conv_path}") + with open(conv_path, 'r') as f: + content = f.read() + + # Generate _src variant if missing + if f"cnn_conv{ks}x{ks}_7to4_src" not in content: + generate_conv_src_function(ks, conv_path) + print(f"Added _src variant to {conv_path}") + with open(conv_path, 'r') as f: + content = f.read() + + # Generate 7to1 final layer if missing + if f"cnn_conv{ks}x{ks}_7to1" not in content: + generate_conv_final_function(ks, conv_path) + print(f"Added 7to1 variant to {conv_path}") + + print("Training complete!") + + +def export_from_checkpoint(checkpoint_path, output_path=None): + """Export WGSL files from checkpoint without training""" + + if not os.path.exists(checkpoint_path): + print(f"Error: Checkpoint file '{checkpoint_path}' not found") + sys.exit(1) + + print(f"Loading checkpoint from {checkpoint_path}...") + checkpoint = torch.load(checkpoint_path, map_location='cpu') + + kernel_sizes = checkpoint['kernel_sizes'] + num_layers = checkpoint['num_layers'] + + # Recreate model + model = SimpleCNN(num_layers=num_layers, kernel_sizes=kernel_sizes) + model.load_state_dict(checkpoint['model_state']) + + # Export weights + output_path = output_path or 'workspaces/main/shaders/cnn/cnn_weights_generated.wgsl' + print(f"Exporting weights to {output_path}...") + os.makedirs(os.path.dirname(output_path), exist_ok=True) + export_weights_to_wgsl(model, output_path, kernel_sizes) + + # Generate layer shader + shader_dir = os.path.dirname(output_path) + shader_path = os.path.join(shader_dir, 'cnn_layer.wgsl') + print(f"Generating layer shader to {shader_path}...") + generate_layer_shader(shader_path, num_layers, kernel_sizes) + + # Generate conv shader files for all kernel sizes + for ks in set(kernel_sizes): + conv_path = os.path.join(shader_dir, f'cnn_conv{ks}x{ks}.wgsl') + + # Create file with header if it doesn't exist + if not os.path.exists(conv_path): + print(f"Creating {conv_path}...") + with open(conv_path, 'w') as f: + f.write(f"// {ks}x{ks} convolution (vec4-optimized)\n") + generate_conv_base_function(ks, conv_path) + generate_conv_src_function(ks, conv_path) + generate_conv_final_function(ks, conv_path) + print(f"Generated complete {conv_path}") + continue + + # File exists, check for missing functions + with open(conv_path, 'r') as f: + content = f.read() + + # Generate base 7to4 if missing + if f"cnn_conv{ks}x{ks}_7to4" not in content: + generate_conv_base_function(ks, conv_path) + print(f"Added base 7to4 to {conv_path}") + with open(conv_path, 'r') as f: + content = f.read() + + # Generate _src variant if missing + if f"cnn_conv{ks}x{ks}_7to4_src" not in content: + generate_conv_src_function(ks, conv_path) + print(f"Added _src variant to {conv_path}") + with open(conv_path, 'r') as f: + content = f.read() + + # Generate 7to1 final layer if missing + if f"cnn_conv{ks}x{ks}_7to1" not in content: + generate_conv_final_function(ks, conv_path) + print(f"Added 7to1 variant to {conv_path}") + + print("Export complete!") + + +def infer_from_checkpoint(checkpoint_path, input_path, output_path, patch_size=32, save_intermediates=None, zero_weights=False, debug_hex=False): + """Run sliding-window inference to match WGSL shader behavior + + Outputs RGBA PNG (RGB from model + alpha from input). + """ + + if not os.path.exists(checkpoint_path): + print(f"Error: Checkpoint '{checkpoint_path}' not found") + sys.exit(1) + + if not os.path.exists(input_path): + print(f"Error: Input image '{input_path}' not found") + sys.exit(1) + + print(f"Loading checkpoint from {checkpoint_path}...") + checkpoint = torch.load(checkpoint_path, map_location='cpu') + + # Reconstruct model + model = SimpleCNN( + num_layers=checkpoint['num_layers'], + kernel_sizes=checkpoint['kernel_sizes'] + ) + model.load_state_dict(checkpoint['model_state']) + + # Debug: Zero out all weights and biases + if zero_weights: + print("DEBUG: Zeroing out all weights and biases") + for layer in model.layers: + with torch.no_grad(): + layer.weight.zero_() + layer.bias.zero_() + + model.eval() + + # Load image + print(f"Loading input image: {input_path}") + img = Image.open(input_path).convert('RGBA') + img_tensor = transforms.ToTensor()(img).unsqueeze(0) # [1,4,H,W] + W, H = img.size + + # Process full image with sliding window (matches WGSL shader) + print(f"Processing full image ({W}×{H}) with sliding window...") + with torch.no_grad(): + if save_intermediates: + output_tensor, intermediates = model(img_tensor, return_intermediates=True) + else: + output_tensor = model(img_tensor) # [1,3,H,W] RGB + + # Convert to numpy and append alpha + output = output_tensor.squeeze(0).permute(1, 2, 0).numpy() # [H,W,3] RGB + alpha = img_tensor[0, 3:4, :, :].permute(1, 2, 0).numpy() # [H,W,1] alpha from input + output_rgba = np.concatenate([output, alpha], axis=2) # [H,W,4] RGBA + + # Debug: print first 8 pixels as hex + if debug_hex: + output_u8 = (output_rgba * 255).astype(np.uint8) + print("First 8 pixels (RGBA hex):") + for i in range(min(8, output_u8.shape[0] * output_u8.shape[1])): + y, x = i // output_u8.shape[1], i % output_u8.shape[1] + r, g, b, a = output_u8[y, x] + print(f" [{i}] 0x{r:02X}{g:02X}{b:02X}{a:02X}") + + # Save final output as RGBA + print(f"Saving output to: {output_path}") + os.makedirs(os.path.dirname(output_path) if os.path.dirname(output_path) else '.', exist_ok=True) + output_img = Image.fromarray((output_rgba * 255).astype(np.uint8), mode='RGBA') + output_img.save(output_path) + + # Save intermediates if requested + if save_intermediates: + os.makedirs(save_intermediates, exist_ok=True) + print(f"Saving {len(intermediates)} intermediate layers to: {save_intermediates}") + for layer_idx, layer_tensor in enumerate(intermediates): + # Convert [-1,1] to [0,1] for visualization + layer_data = (layer_tensor.squeeze(0).permute(1, 2, 0).numpy() + 1.0) * 0.5 + layer_u8 = (layer_data.clip(0, 1) * 255).astype(np.uint8) + + # Debug: print first 8 pixels as hex + if debug_hex: + print(f"Layer {layer_idx} first 8 pixels (RGBA hex):") + for i in range(min(8, layer_u8.shape[0] * layer_u8.shape[1])): + y, x = i // layer_u8.shape[1], i % layer_u8.shape[1] + if layer_u8.shape[2] == 4: + r, g, b, a = layer_u8[y, x] + print(f" [{i}] 0x{r:02X}{g:02X}{b:02X}{a:02X}") + else: + r, g, b = layer_u8[y, x] + print(f" [{i}] 0x{r:02X}{g:02X}{b:02X}") + + # Save all 4 channels for intermediate layers + if layer_data.shape[2] == 4: + layer_img = Image.fromarray(layer_u8, mode='RGBA') + else: + layer_img = Image.fromarray(layer_u8) + layer_path = os.path.join(save_intermediates, f'layer_{layer_idx}.png') + layer_img.save(layer_path) + print(f" Saved layer {layer_idx} to {layer_path}") + + print("Done!") + + +def main(): + parser = argparse.ArgumentParser(description='Train CNN for image-to-image transformation') + parser.add_argument('--input', help='Input image directory (training) or single image (inference)') + parser.add_argument('--target', help='Target image directory') + parser.add_argument('--layers', type=int, default=1, help='Number of CNN layers (default: 1)') + parser.add_argument('--kernel_sizes', default='3', help='Comma-separated kernel sizes (default: 3)') + parser.add_argument('--epochs', type=int, default=100, help='Number of training epochs (default: 100)') + parser.add_argument('--batch_size', type=int, default=4, help='Batch size (default: 4)') + parser.add_argument('--learning_rate', type=float, default=0.001, help='Learning rate (default: 0.001)') + parser.add_argument('--output', help='Output path (WGSL for training/export, PNG for inference)') + parser.add_argument('--checkpoint-every', type=int, default=0, help='Save checkpoint every N epochs (default: 0 = disabled)') + parser.add_argument('--checkpoint-dir', help='Checkpoint directory (default: training/checkpoints)') + parser.add_argument('--resume', help='Resume from checkpoint file') + parser.add_argument('--export-only', help='Export WGSL from checkpoint without training') + parser.add_argument('--infer', help='Run inference on single image (requires --export-only for checkpoint)') + parser.add_argument('--patch-size', type=int, help='Extract patches of this size (e.g., 32) instead of resizing (default: None = resize to 256x256)') + parser.add_argument('--patches-per-image', type=int, default=64, help='Number of patches to extract per image (default: 64)') + parser.add_argument('--detector', default='harris', choices=['harris', 'fast', 'shi-tomasi', 'gradient'], + help='Salient point detector for patch extraction (default: harris)') + parser.add_argument('--early-stop-patience', type=int, default=0, help='Stop if loss changes less than eps over N epochs (default: 0 = disabled)') + parser.add_argument('--early-stop-eps', type=float, default=1e-6, help='Loss change threshold for early stopping (default: 1e-6)') + parser.add_argument('--save-intermediates', help='Directory to save intermediate layer outputs (inference only)') + parser.add_argument('--zero-weights', action='store_true', help='Zero out all weights/biases during inference (debug only)') + parser.add_argument('--debug-hex', action='store_true', help='Print first 8 pixels as hex (debug only)') + + args = parser.parse_args() + + # Inference mode + if args.infer: + checkpoint = args.export_only + if not checkpoint: + print("Error: --infer requires --export-only <checkpoint>") + sys.exit(1) + output_path = args.output or 'inference_output.png' + patch_size = args.patch_size or 32 + infer_from_checkpoint(checkpoint, args.infer, output_path, patch_size, args.save_intermediates, args.zero_weights, args.debug_hex) + return + + # Export-only mode + if args.export_only: + export_from_checkpoint(args.export_only, args.output) + return + + # Validate directories for training + if not args.input or not args.target: + print("Error: --input and --target required for training (or use --export-only)") + sys.exit(1) + + if not os.path.isdir(args.input): + print(f"Error: Input directory '{args.input}' does not exist") + sys.exit(1) + + if not os.path.isdir(args.target): + print(f"Error: Target directory '{args.target}' does not exist") + sys.exit(1) + + train(args) + + +if __name__ == "__main__": + main() |
