diff options
Diffstat (limited to 'cnn_v1/shaders/cnn_layer.wgsl')
| -rw-r--r-- | cnn_v1/shaders/cnn_layer.wgsl | 55 |
1 files changed, 55 insertions, 0 deletions
diff --git a/cnn_v1/shaders/cnn_layer.wgsl b/cnn_v1/shaders/cnn_layer.wgsl new file mode 100644 index 0000000..cbd1686 --- /dev/null +++ b/cnn_v1/shaders/cnn_layer.wgsl @@ -0,0 +1,55 @@ +// CNN layer shader - uses modular convolution snippets +// Supports multi-pass rendering with residual connections +// DO NOT EDIT - Generated by train_cnn.py + +@group(0) @binding(0) var smplr: sampler; +@group(0) @binding(1) var txt: texture_2d<f32>; + +#include "common_uniforms" +#include "cnn_activation" +#include "cnn_conv3x3" +#include "cnn_conv5x5" +#include "cnn_weights_generated" + +struct CNNLayerParams { + layer_index: i32, + blend_amount: f32, + _pad: vec2<f32>, +}; + +@group(0) @binding(2) var<uniform> uniforms: CommonUniforms; +@group(0) @binding(3) var<uniform> params: CNNLayerParams; +@group(0) @binding(4) var original_input: texture_2d<f32>; + +@vertex fn vs_main(@builtin(vertex_index) i: u32) -> @builtin(position) vec4<f32> { + var pos = array<vec2<f32>, 3>( + vec2<f32>(-1.0, -1.0), vec2<f32>(3.0, -1.0), vec2<f32>(-1.0, 3.0) + ); + return vec4<f32>(pos[i], 0.0, 1.0); +} + +@fragment fn fs_main(@builtin(position) p: vec4<f32>) -> @location(0) vec4<f32> { + // Match PyTorch linspace + let uv = (p.xy - 0.5) / (uniforms.resolution - 1.0); + let original_raw = textureSample(original_input, smplr, uv); + let original = (original_raw - 0.5) * 2.0; // Normalize to [-1,1] + let gray = (dot(original_raw.rgb, vec3<f32>(0.2126, 0.7152, 0.0722)) - 0.5) * 2.0; + var result = vec4<f32>(0.0); + + // Layer 0: 7→4 (RGBD output, normalizes [0,1] input) + if (params.layer_index == 0) { + result = cnn_conv5x5_7to4_src(txt, smplr, uv, uniforms.resolution, weights_layer0); + result = cnn_tanh(result); + } + else if (params.layer_index == 1) { + result = cnn_conv3x3_7to4(txt, smplr, uv, uniforms.resolution, gray, weights_layer1); + result = cnn_tanh(result); // Keep in [-1,1] + } + else if (params.layer_index == 2) { + let sum = cnn_conv3x3_7to1(txt, smplr, uv, uniforms.resolution, gray, weights_layer2); + let gray_out = 1.0 / (1.0 + exp(-sum)); // Sigmoid activation + result = vec4<f32>(gray_out, gray_out, gray_out, 1.0); + return mix(original_raw, result, params.blend_amount); // [0,1] + } + return result; // [-1,1] +} |
