summaryrefslogtreecommitdiff
path: root/workspaces
diff options
context:
space:
mode:
authorskal <pascal.massimino@gmail.com>2026-02-10 10:27:44 +0100
committerskal <pascal.massimino@gmail.com>2026-02-10 10:27:44 +0100
commit96a349b9874c6cdaac525ba062a0f4f90c9bc3ed (patch)
treea4eb24fdb417393cbe5a0dc84bf5063cffc94daf /workspaces
parent75af266889b61b5722d842a1a1eb23f79bc06a85 (diff)
feat: Add coordinate-aware CNN layer 0 for position-dependent stylization
- Implement CoordConv2d custom layer accepting (x,y) patch center - Split layer 0 weights: rgba_weights (9x mat4x4) + coord_weights (mat2x4) - Add *_with_coord() functions to 3x3/5x5/7x7 convolution shaders - Update training script to generate coordinate grid and export split weights - Regenerate placeholder weights with new format Size impact: +32B coord weights + ~100B shader code = +132B total All 36 tests passing (100%) handoff(Claude): CNN coordinate awareness implemented, ready for training Co-Authored-By: Claude Sonnet 4.5 <noreply@anthropic.com>
Diffstat (limited to 'workspaces')
-rw-r--r--workspaces/main/shaders/cnn/cnn_conv3x3.wgsl27
-rw-r--r--workspaces/main/shaders/cnn/cnn_conv5x5.wgsl27
-rw-r--r--workspaces/main/shaders/cnn/cnn_conv7x7.wgsl27
-rw-r--r--workspaces/main/shaders/cnn/cnn_layer.wgsl6
-rw-r--r--workspaces/main/shaders/cnn/cnn_weights_generated.wgsl10
5 files changed, 92 insertions, 5 deletions
diff --git a/workspaces/main/shaders/cnn/cnn_conv3x3.wgsl b/workspaces/main/shaders/cnn/cnn_conv3x3.wgsl
index 06ca73a..168c9e2 100644
--- a/workspaces/main/shaders/cnn/cnn_conv3x3.wgsl
+++ b/workspaces/main/shaders/cnn/cnn_conv3x3.wgsl
@@ -24,3 +24,30 @@ fn cnn_conv3x3(
return sum;
}
+
+fn cnn_conv3x3_with_coord(
+ tex: texture_2d<f32>,
+ samp: sampler,
+ uv: vec2<f32>,
+ resolution: vec2<f32>,
+ rgba_weights: array<mat4x4<f32>, 9>,
+ coord_weights: mat2x4<f32>,
+ bias: vec4<f32>
+) -> vec4<f32> {
+ let step = 1.0 / resolution;
+ var sum = bias;
+
+ sum += coord_weights * uv;
+
+ var idx = 0;
+ for (var dy = -1; dy <= 1; dy++) {
+ for (var dx = -1; dx <= 1; dx++) {
+ let offset = vec2<f32>(f32(dx), f32(dy)) * step;
+ let rgba = textureSample(tex, samp, uv + offset);
+ sum += rgba_weights[idx] * rgba;
+ idx++;
+ }
+ }
+
+ return sum;
+}
diff --git a/workspaces/main/shaders/cnn/cnn_conv5x5.wgsl b/workspaces/main/shaders/cnn/cnn_conv5x5.wgsl
index 3d4a03a..bd9abfa 100644
--- a/workspaces/main/shaders/cnn/cnn_conv5x5.wgsl
+++ b/workspaces/main/shaders/cnn/cnn_conv5x5.wgsl
@@ -24,3 +24,30 @@ fn cnn_conv5x5(
return sum;
}
+
+fn cnn_conv5x5_with_coord(
+ tex: texture_2d<f32>,
+ samp: sampler,
+ uv: vec2<f32>,
+ resolution: vec2<f32>,
+ rgba_weights: array<mat4x4<f32>, 25>,
+ coord_weights: mat2x4<f32>,
+ bias: vec4<f32>
+) -> vec4<f32> {
+ let step = 1.0 / resolution;
+ var sum = bias;
+
+ sum += coord_weights * uv;
+
+ var idx = 0;
+ for (var dy = -2; dy <= 2; dy++) {
+ for (var dx = -2; dx <= 2; dx++) {
+ let offset = vec2<f32>(f32(dx), f32(dy)) * step;
+ let rgba = textureSample(tex, samp, uv + offset);
+ sum += rgba_weights[idx] * rgba;
+ idx++;
+ }
+ }
+
+ return sum;
+}
diff --git a/workspaces/main/shaders/cnn/cnn_conv7x7.wgsl b/workspaces/main/shaders/cnn/cnn_conv7x7.wgsl
index ba28d64..e68d644 100644
--- a/workspaces/main/shaders/cnn/cnn_conv7x7.wgsl
+++ b/workspaces/main/shaders/cnn/cnn_conv7x7.wgsl
@@ -24,3 +24,30 @@ fn cnn_conv7x7(
return sum;
}
+
+fn cnn_conv7x7_with_coord(
+ tex: texture_2d<f32>,
+ samp: sampler,
+ uv: vec2<f32>,
+ resolution: vec2<f32>,
+ rgba_weights: array<mat4x4<f32>, 49>,
+ coord_weights: mat2x4<f32>,
+ bias: vec4<f32>
+) -> vec4<f32> {
+ let step = 1.0 / resolution;
+ var sum = bias;
+
+ sum += coord_weights * uv;
+
+ var idx = 0;
+ for (var dy = -3; dy <= 3; dy++) {
+ for (var dx = -3; dx <= 3; dx++) {
+ let offset = vec2<f32>(f32(dx), f32(dy)) * step;
+ let rgba = textureSample(tex, samp, uv + offset);
+ sum += rgba_weights[idx] * rgba;
+ idx++;
+ }
+ }
+
+ return sum;
+}
diff --git a/workspaces/main/shaders/cnn/cnn_layer.wgsl b/workspaces/main/shaders/cnn/cnn_layer.wgsl
index e026ce8..b2bab26 100644
--- a/workspaces/main/shaders/cnn/cnn_layer.wgsl
+++ b/workspaces/main/shaders/cnn/cnn_layer.wgsl
@@ -29,10 +29,10 @@ struct CNNLayerParams {
let uv = p.xy / uniforms.resolution;
var result = vec4<f32>(0.0);
- // Single layer for now (layer 0)
+ // Layer 0 uses coordinate-aware convolution
if (params.layer_index == 0) {
- result = cnn_conv3x3(txt, smplr, uv, uniforms.resolution,
- weights_layer0, bias_layer0);
+ result = cnn_conv3x3_with_coord(txt, smplr, uv, uniforms.resolution,
+ rgba_weights_layer0, coord_weights_layer0, bias_layer0);
result = cnn_tanh(result);
}
diff --git a/workspaces/main/shaders/cnn/cnn_weights_generated.wgsl b/workspaces/main/shaders/cnn/cnn_weights_generated.wgsl
index 98c17ff..e0a7dc4 100644
--- a/workspaces/main/shaders/cnn/cnn_weights_generated.wgsl
+++ b/workspaces/main/shaders/cnn/cnn_weights_generated.wgsl
@@ -2,8 +2,8 @@
// DO NOT EDIT MANUALLY - regenerate with scripts/train_cnn.py
// Placeholder identity-like weights for initial testing
-// Layer 0: 3x3 convolution
-const weights_layer0: array<mat4x4<f32>, 9> = array(
+// Layer 0: 3x3 convolution with coordinate awareness
+const rgba_weights_layer0: array<mat4x4<f32>, 9> = array(
mat4x4<f32>(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0),
mat4x4<f32>(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0),
mat4x4<f32>(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0),
@@ -14,4 +14,10 @@ const weights_layer0: array<mat4x4<f32>, 9> = array(
mat4x4<f32>(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0),
mat4x4<f32>(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
);
+
+const coord_weights_layer0 = mat2x4<f32>(
+ 0.0, 0.0, 0.0, 0.0,
+ 0.0, 0.0, 0.0, 0.0
+);
+
const bias_layer0 = vec4<f32>(0.0, 0.0, 0.0, 0.0);