summaryrefslogtreecommitdiff
path: root/workspaces/main/shaders/cnn/cnn_layer.wgsl
diff options
context:
space:
mode:
authorskal <pascal.massimino@gmail.com>2026-02-10 17:37:01 +0100
committerskal <pascal.massimino@gmail.com>2026-02-10 17:37:01 +0100
commitf3c7ef8cd612f5ac908f39310c4c11566879313f (patch)
tree1e66127a855f30282c852731c0dd88ae6c7039bc /workspaces/main/shaders/cnn/cnn_layer.wgsl
parent0aa35e895d70f4535b7fac0f5df318888a6847dc (diff)
fix: Support variable kernel sizes in CNN layer generation
Training script was hardcoded to generate cnn_conv3x3_* calls regardless of actual kernel size, causing shader validation errors when layer 1 used 5×5 kernel (100 weights) but called 3×3 function (expected 36). Changes: - train_cnn.py: Generate correct conv function based on kernel_sizes[i] - cnn_conv5x5.wgsl: Add cnn_conv5x5_7to4 and cnn_conv5x5_7to1 variants - Regenerate cnn_layer.wgsl with correct function calls for [3,5,3] - Document kernel size→function mapping in HOWTO.md Co-Authored-By: Claude Sonnet 4.5 <noreply@anthropic.com>
Diffstat (limited to 'workspaces/main/shaders/cnn/cnn_layer.wgsl')
-rw-r--r--workspaces/main/shaders/cnn/cnn_layer.wgsl30
1 files changed, 20 insertions, 10 deletions
diff --git a/workspaces/main/shaders/cnn/cnn_layer.wgsl b/workspaces/main/shaders/cnn/cnn_layer.wgsl
index 5834f78..fad283c 100644
--- a/workspaces/main/shaders/cnn/cnn_layer.wgsl
+++ b/workspaces/main/shaders/cnn/cnn_layer.wgsl
@@ -8,6 +8,7 @@
#include "common_uniforms"
#include "cnn_activation"
#include "cnn_conv3x3"
+#include "cnn_conv5x5"
#include "cnn_weights_generated"
struct CNNLayerParams {
@@ -33,24 +34,33 @@ struct CNNLayerParams {
let original = textureSample(original_input, smplr, uv);
var result = vec4<f32>(0.0);
- // Layer 0 uses coordinate-aware convolution
+ // Layer 0: 7→4 (RGBD output)
if (params.layer_index == 0) {
- result = cnn_conv3x3_with_coord(txt, smplr, uv, uniforms.resolution,
- rgba_weights_layer0, coord_weights_layer0, bias_layer0);
- result = cnn_tanh(result);
+ result = cnn_conv3x3_7to4(txt, smplr, uv, uniforms.resolution,
+ original, weights_layer0);
+ result = cnn_tanh(result); // Output in [-1,1]
+ // Denormalize to [0,1] for texture storage
+ result = (result + 1.0) * 0.5;
}
else if (params.layer_index == 1) {
- result = cnn_conv3x3(txt, smplr, uv, uniforms.resolution,
- weights_layer1, bias_layer1);
- result = cnn_tanh(result);
+ result = cnn_conv5x5_7to4(txt, smplr, uv, uniforms.resolution,
+ original, weights_layer1);
+ result = cnn_tanh(result); // Output in [-1,1]
+ // Denormalize to [0,1] for texture storage
+ result = (result + 1.0) * 0.5;
}
else if (params.layer_index == 2) {
- result = cnn_conv3x3(txt, smplr, uv, uniforms.resolution,
- weights_layer2, bias_layer2);
+ let gray_out = cnn_conv3x3_7to1(txt, smplr, uv, uniforms.resolution,
+ original, weights_layer2);
+ // Denormalize from [-1,1] to [0,1]
+ let gray_01 = (gray_out + 1.0) * 0.5;
+ result = vec4<f32>(gray_01, gray_01, gray_01, 1.0); // Expand to RGB
}
else {
result = input;
}
- return mix(original, result, params.blend_amount);
+ // Blend with ORIGINAL input from layer 0
+return original;
+// return mix(original, result, params.blend_amount);
}