diff options
| author | skal <pascal.massimino@gmail.com> | 2026-02-12 11:52:16 +0100 |
|---|---|---|
| committer | skal <pascal.massimino@gmail.com> | 2026-02-12 11:52:16 +0100 |
| commit | 4cbf571a0087020bedf3c565483f94bc795ed4c4 (patch) | |
| tree | 81dfccc94d1a85815fd9626e94463530c1794e0a /workspaces/main/assets.txt | |
| parent | 7547e8ff4744339b92650b6ef3ff7405befe4beb (diff) | |
TODO: Add random sampling to patch-based training
Added note for future enhancement: mix salient + random samples.
Rationale:
- Salient point detection focuses on edges/corners
- Random samples improve generalization across entire image
- Prevents overfitting to only high-gradient regions
Proposed implementation:
- Default: 90% salient points, 10% random samples
- Configurable: --random-sample-percent parameter
- Example: 64 patches = 58 salient + 6 random
Location: train_cnn_v2.py
- TODO in _detect_salient_points() method
- TODO in argument parser
Co-Authored-By: Claude Sonnet 4.5 <noreply@anthropic.com>
Diffstat (limited to 'workspaces/main/assets.txt')
0 files changed, 0 insertions, 0 deletions
