summaryrefslogtreecommitdiff
path: root/workspaces/main/assets.txt
diff options
context:
space:
mode:
authorskal <pascal.massimino@gmail.com>2026-02-12 11:52:16 +0100
committerskal <pascal.massimino@gmail.com>2026-02-12 11:52:16 +0100
commit4cbf571a0087020bedf3c565483f94bc795ed4c4 (patch)
tree81dfccc94d1a85815fd9626e94463530c1794e0a /workspaces/main/assets.txt
parent7547e8ff4744339b92650b6ef3ff7405befe4beb (diff)
TODO: Add random sampling to patch-based training
Added note for future enhancement: mix salient + random samples. Rationale: - Salient point detection focuses on edges/corners - Random samples improve generalization across entire image - Prevents overfitting to only high-gradient regions Proposed implementation: - Default: 90% salient points, 10% random samples - Configurable: --random-sample-percent parameter - Example: 64 patches = 58 salient + 6 random Location: train_cnn_v2.py - TODO in _detect_salient_points() method - TODO in argument parser Co-Authored-By: Claude Sonnet 4.5 <noreply@anthropic.com>
Diffstat (limited to 'workspaces/main/assets.txt')
0 files changed, 0 insertions, 0 deletions