summaryrefslogtreecommitdiff
path: root/training/train_cnn_v2.py
diff options
context:
space:
mode:
authorskal <pascal.massimino@gmail.com>2026-02-13 16:54:47 +0100
committerskal <pascal.massimino@gmail.com>2026-02-13 16:54:47 +0100
commit4c21145ce5e408dd38e8374eed320fcfac97c0c4 (patch)
tree172340a2ad720d7c4371b8897fced9a9419c53ed /training/train_cnn_v2.py
parente4c1641201af04c9919410325f4e0865e8b88d5d (diff)
CNN v2: Add TODO for flexible feature layout in binary format v3
Document future enhancement for arbitrary feature vector layouts. Proposed feature descriptor in binary format v3: - Specify feature types, sources, and ordering - Enable runtime experimentation without shader recompilation - Examples: [R,G,B,dx,dy,uv_x,bias] or [mip1.r,mip2.g,laplacian,uv_x,sin20_x,bias] Added TODOs in: - CNN_V2_BINARY_FORMAT.md: Detailed proposal with struct layout - CNN_V2.md: Future extensions section - train_cnn_v2.py: compute_static_features() docstring - cnn_v2_static.wgsl: Shader header comment - cnn_v2_effect.cc: Version check comment Current limitation: Hardcoded [p0,p1,p2,p3,uv_x,uv_y,sin10_x,bias] layout. Co-Authored-By: Claude Sonnet 4.5 <noreply@anthropic.com>
Diffstat (limited to 'training/train_cnn_v2.py')
-rwxr-xr-xtraining/train_cnn_v2.py6
1 files changed, 6 insertions, 0 deletions
diff --git a/training/train_cnn_v2.py b/training/train_cnn_v2.py
index 3d49d13..1487c08 100755
--- a/training/train_cnn_v2.py
+++ b/training/train_cnn_v2.py
@@ -33,6 +33,12 @@ def compute_static_features(rgb, depth=None, mip_level=0):
(H, W, 8) static features: [p0, p1, p2, p3, uv_x, uv_y, sin10_x, bias]
Note: p0-p3 are parametric features generated from specified mip level
+
+ TODO: Binary format should support arbitrary layout and ordering for feature vector (7D),
+ alongside mip-level indication. Current layout is hardcoded as:
+ [p0, p1, p2, p3, uv_x, uv_y, sin10_x, bias]
+ Future: Allow experimentation with different feature combinations without shader recompilation.
+ Examples: [R, G, B, dx, dy, uv_x, bias] or [mip1.r, mip2.g, laplacian, uv_x, sin20_x, bias]
"""
h, w = rgb.shape[:2]