summaryrefslogtreecommitdiff
path: root/training/input/img_007.png
diff options
context:
space:
mode:
authorskal <pascal.massimino@gmail.com>2026-02-14 02:12:12 +0100
committerskal <pascal.massimino@gmail.com>2026-02-14 02:12:12 +0100
commit043044ae7563c2f92760c428765e35b411da82ea (patch)
tree0d640fec1517169d195747707b6c589c92fe7161 /training/input/img_007.png
parent4d119a1b6a6f460ca6d5a8ef85176c45663fd40a (diff)
Replace hard clamp with sigmoid activation in CNN v2
Fixes training collapse where p1/p2 channels saturate due to gradient blocking at clamp boundaries. Sigmoid provides smooth [0,1] mapping with continuous gradients. Changes: - Layer 0: clamp(x, 0, 1) → sigmoid(x) - Final layer: clamp(x, 0, 1) → sigmoid(x) - Middle layers: ReLU unchanged (already stable) Updated files: - training/train_cnn_v2.py: PyTorch model activations - workspaces/main/shaders/cnn_v2/cnn_v2_compute.wgsl: WGSL shader - tools/cnn_v2_test/index.html: HTML validation tool - doc/CNN_V2.md: Documentation Validation: - Build clean (no shader errors) - 34/36 tests pass (2 unrelated script tests fail) - 10-epoch training: loss 0.153 → 0.088 (good convergence) - cnn_test processes images successfully Breaking change: Old checkpoints trained with clamp() incompatible. Retrain from scratch required. handoff(Claude): CNN v2 sigmoid activation implemented and validated.
Diffstat (limited to 'training/input/img_007.png')
0 files changed, 0 insertions, 0 deletions