diff options
| author | skal <pascal.massimino@gmail.com> | 2026-02-16 08:39:59 +0100 |
|---|---|---|
| committer | skal <pascal.massimino@gmail.com> | 2026-02-16 08:39:59 +0100 |
| commit | b17282752ee7aa384ca36daa21d034617ca34a4b (patch) | |
| tree | bd1e0f91ffcbdd835a0f1a0b9b87f6aa9de418fb /tools | |
| parent | 9d1d4df877f96f1970dce2ab30cfae49d3d796e1 (diff) | |
feat(sequence): Phase 2 - Python DAG compiler
- Pure Python 3 compiler for v2 timeline syntax
- DAG validation: cycle detection, connectivity, node inference
- Topological sort (Kahn's algorithm)
- Lifetime analysis for optimization
- Ping-pong detection framework (needs refinement)
- Multi-input/multi-output effect routing
- Generates optimized C++ SequenceV2 subclasses
Validated on:
- Simple linear chain (source->temp->sink)
- Complex DAG (deferred render + compose + post)
- Generates correct execution order
Phase 2 complete. Next: Phase 3 effect migration
handoff(Claude): Phase 2 complete, compiler generates valid C++
Diffstat (limited to 'tools')
| -rwxr-xr-x | tools/seq_compiler_v2.py | 499 |
1 files changed, 499 insertions, 0 deletions
diff --git a/tools/seq_compiler_v2.py b/tools/seq_compiler_v2.py new file mode 100755 index 0000000..56bf613 --- /dev/null +++ b/tools/seq_compiler_v2.py @@ -0,0 +1,499 @@ +#!/usr/bin/env python3 +"""Sequence v2 Compiler - DAG-based timeline compiler with ping-pong optimization. + +Converts v2 timeline syntax into optimized C++ SequenceV2 subclasses. +Performs DAG validation, topological sorting, and lifetime analysis. +""" + +import argparse +import os +import re +import sys +from typing import Dict, List, Set, Tuple, Optional + +# Node type enum mapping +NODE_TYPES = { + 'u8x4_norm': 'NodeType::U8X4_NORM', + 'f32x4': 'NodeType::F32X4', + 'f16x8': 'NodeType::F16X8', + 'depth24': 'NodeType::DEPTH24', + 'compute_f32': 'NodeType::COMPUTE_F32', +} + +class NodeDecl: + def __init__(self, name: str, node_type: str): + self.name = name + self.type = node_type + +class EffectDecl: + def __init__(self, class_name: str, inputs: List[str], outputs: List[str], + start: float, end: float, priority: int, params: str): + self.class_name = class_name + self.inputs = inputs + self.outputs = outputs + self.start = start + self.end = end + self.priority = priority + self.params = params + self.execution_order = -1 + +class SequenceDecl: + def __init__(self, name: str, start_time: float, priority: int): + self.name = name + self.start_time = start_time + self.priority = priority + self.nodes: Dict[str, NodeDecl] = {} + self.assets: Set[str] = set() + self.effects: List[EffectDecl] = [] + +def parse_timeline(filename: str) -> List[SequenceDecl]: + """Parse v2 timeline file.""" + sequences = [] + current_seq = None + + with open(filename, 'r') as f: + for line_num, line in enumerate(f, 1): + line = line.strip() + + # Skip comments and empty lines + if not line or line.startswith('#'): + continue + + # BPM directive (ignored for now) + if line.startswith('# BPM'): + continue + + # SEQUENCE start + if line.startswith('SEQUENCE'): + parts = line.split() + start_time = float(parts[1]) + priority = int(parts[2]) + name = ' '.join(parts[3:]).strip('"') if len(parts) > 3 else f"seq_{start_time}" + current_seq = SequenceDecl(name, start_time, priority) + sequences.append(current_seq) + continue + + if not current_seq: + print(f"Error: {filename}:{line_num}: Effect/Node outside SEQUENCE block", file=sys.stderr) + sys.exit(1) + + # NODE declaration + if line.startswith('NODE'): + parts = line.split() + if len(parts) < 3: + print(f"Error: {filename}:{line_num}: NODE requires name and type", file=sys.stderr) + sys.exit(1) + node_name = parts[1] + node_type = parts[2] + if node_type not in NODE_TYPES: + print(f"Error: {filename}:{line_num}: Unknown node type '{node_type}'", file=sys.stderr) + sys.exit(1) + current_seq.nodes[node_name] = NodeDecl(node_name, node_type) + continue + + # ASSET declaration + if line.startswith('ASSET'): + parts = line.split() + if len(parts) < 2: + print(f"Error: {filename}:{line_num}: ASSET requires name", file=sys.stderr) + sys.exit(1) + current_seq.assets.add(parts[1]) + continue + + # EFFECT with routing + if line.startswith('EFFECT'): + # Parse: EFFECT +/=/- ClassName inputs... -> outputs... start end [params...] + match = re.match(r'EFFECT\s+([+\-=])\s+(\w+)\s+(.+)', line) + if not match: + print(f"Error: {filename}:{line_num}: Invalid EFFECT syntax", file=sys.stderr) + sys.exit(1) + + priority_mod = match.group(1) + class_name = match.group(2) + rest = match.group(3) + + # Parse routing: inputs... -> outputs... start end [params] + if '->' not in rest: + print(f"Error: {filename}:{line_num}: EFFECT missing '->' routing", file=sys.stderr) + sys.exit(1) + + before_arrow, after_arrow = rest.split('->', 1) + inputs = before_arrow.strip().split() + + after_parts = after_arrow.strip().split() + # Find where outputs end (look for numeric start time) + outputs = [] + idx = 0 + while idx < len(after_parts): + try: + float(after_parts[idx]) + break + except ValueError: + outputs.append(after_parts[idx]) + idx += 1 + + if idx + 2 > len(after_parts): + print(f"Error: {filename}:{line_num}: EFFECT missing start/end times", file=sys.stderr) + sys.exit(1) + + start_time = float(after_parts[idx]) + end_time = float(after_parts[idx + 1]) + params = ' '.join(after_parts[idx + 2:]) if idx + 2 < len(after_parts) else '' + + # Priority calculation (relative to sequence priority) + if priority_mod == '+': + effect_priority = current_seq.priority + len(current_seq.effects) + elif priority_mod == '=': + effect_priority = current_seq.priority + len(current_seq.effects) - 1 if current_seq.effects else current_seq.priority + else: # '-' + effect_priority = current_seq.priority - 1 + + effect = EffectDecl(class_name, inputs, outputs, start_time, end_time, effect_priority, params) + current_seq.effects.append(effect) + continue + + print(f"Warning: {filename}:{line_num}: Unrecognized line: {line}", file=sys.stderr) + + return sequences + +def validate_dag(seq: SequenceDecl) -> None: + """Validate DAG: check for cycles, missing nodes, connectivity.""" + + # 1. Auto-infer nodes from effects + all_nodes = set(seq.nodes.keys()) + all_nodes.add('source') # Implicit + all_nodes.add('sink') # Implicit + + for effect in seq.effects: + for node in effect.inputs + effect.outputs: + if node not in all_nodes and node not in seq.nodes: + # Auto-infer as u8x4_norm + seq.nodes[node] = NodeDecl(node, 'u8x4_norm') + all_nodes.add(node) + + # 2. Check all referenced nodes exist + for effect in seq.effects: + for node in effect.inputs: + if node not in all_nodes: + print(f"Error: Effect {effect.class_name} references undefined input node '{node}'", file=sys.stderr) + sys.exit(1) + for node in effect.outputs: + if node not in all_nodes: + print(f"Error: Effect {effect.class_name} references undefined output node '{node}'", file=sys.stderr) + sys.exit(1) + + # 3. Check for cycles (DFS on effect graph, not node graph) + effect_visited = {} + for effect in seq.effects: + effect_visited[id(effect)] = 0 # 0=unvisited, 1=visiting, 2=visited + + # Build effect dependency graph + def get_effect_dependencies(effect: EffectDecl) -> List[EffectDecl]: + """Get effects that must execute before this one.""" + deps = [] + effect_idx = seq.effects.index(effect) + + for input_node in effect.inputs: + if input_node == 'source': + continue + # Find LAST effect before this one that produces this input + producer = None + for i in range(effect_idx - 1, -1, -1): + other = seq.effects[i] + if input_node in other.outputs: + producer = other + break + + if producer: + deps.append(producer) + return deps + + def dfs_cycle(effect: EffectDecl) -> bool: + eff_id = id(effect) + if effect_visited[eff_id] == 1: + return True # Back edge = cycle + if effect_visited[eff_id] == 2: + return False + + effect_visited[eff_id] = 1 + for dep in get_effect_dependencies(effect): + if dfs_cycle(dep): + return True + effect_visited[eff_id] = 2 + return False + + for effect in seq.effects: + if dfs_cycle(effect): + print(f"Error: Cycle detected in effect DAG involving effect '{effect.class_name}'", file=sys.stderr) + sys.exit(1) + + # 4. Check connectivity (source must reach sink) + reachable = set(['source']) + changed = True + while changed: + changed = False + for effect in seq.effects: + if any(inp in reachable for inp in effect.inputs): + for out in effect.outputs: + if out not in reachable: + reachable.add(out) + changed = True + + if 'sink' not in reachable: + print(f"Error: No path from 'source' to 'sink' in DAG", file=sys.stderr) + sys.exit(1) + +def topological_sort(seq: SequenceDecl) -> List[EffectDecl]: + """Sort effects in execution order using Kahn's algorithm.""" + + # Build dependency graph + in_degree = {} + for effect in seq.effects: + in_degree[id(effect)] = 0 + + # Count dependencies + node_producers = {} # node -> effect that produces it + for effect in seq.effects: + for output in effect.outputs: + node_producers[output] = effect + + # Calculate in-degrees + for effect in seq.effects: + for input_node in effect.inputs: + if input_node == 'source': + continue + if input_node in node_producers: + in_degree[id(effect)] += 1 + + # Find effects with no dependencies + queue = [eff for eff in seq.effects if in_degree[id(eff)] == 0] + sorted_effects = [] + + while queue: + current = queue.pop(0) + sorted_effects.append(current) + + # Mark outputs as available, decrement downstream dependencies + for output in current.outputs: + for other in seq.effects: + if output in other.inputs and id(other) != id(current): + in_degree[id(other)] -= 1 + if in_degree[id(other)] == 0: + queue.append(other) + + if len(sorted_effects) != len(seq.effects): + print(f"Error: DAG has unreachable effects (disconnected components)", file=sys.stderr) + sys.exit(1) + + # Assign execution order + for idx, effect in enumerate(sorted_effects): + effect.execution_order = idx + + return sorted_effects + +def analyze_lifetimes(seq: SequenceDecl, sorted_effects: List[EffectDecl]) -> Dict[str, Tuple[int, int]]: + """Analyze node lifetimes: (first_use, last_use) execution order indices.""" + + lifetimes = {} + + for effect in sorted_effects: + order = effect.execution_order + + for node in effect.inputs: + if node == 'source': + continue + if node not in lifetimes: + lifetimes[node] = (order, order) + else: + lifetimes[node] = (lifetimes[node][0], order) + + for node in effect.outputs: + if node == 'sink': + continue + if node not in lifetimes: + lifetimes[node] = (order, order) + else: + lifetimes[node] = (min(lifetimes[node][0], order), max(lifetimes[node][1], order)) + + return lifetimes + +def detect_ping_pong(seq: SequenceDecl, sorted_effects: List[EffectDecl]) -> Dict[str, str]: + """Detect ping-pong patterns and return alias map. + + Pattern: Effect i writes A, reads B; Effect i+1 writes B, reads A + Optimization: Alias B -> A (reuse same texture) + """ + + aliases = {} + used_nodes = set() + + # Look for adjacent alternating read/write patterns + for i in range(len(sorted_effects) - 1): + eff1 = sorted_effects[i] + eff2 = sorted_effects[i + 1] + + print(f"DEBUG: Checking pair {i}: {eff1.class_name}({eff1.inputs}->{eff1.outputs}) and {eff2.class_name}({eff2.inputs}->{eff2.outputs})", file=sys.stderr) + + # Find nodes that alternate + for out1 in eff1.outputs: + if out1 in ['source', 'sink'] or out1 in used_nodes: + continue + + for in1 in eff1.inputs: + if in1 in ['source', 'sink'] or in1 in used_nodes: + continue + + print(f"DEBUG: Testing out1={out1}, in1={in1}: in1 in eff2.outputs={in1 in eff2.outputs}, out1 in eff2.inputs={out1 in eff2.inputs}", file=sys.stderr) + + # Check if eff2 writes in1 and reads out1 (alternating) + if in1 in eff2.outputs and out1 in eff2.inputs: + # Classic ping-pong: eff1 (reads in1, writes out1), eff2 (reads out1, writes in1) + print(f"DEBUG: Found potential ping-pong: {in1} <-> {out1} between {eff1.class_name} and {eff2.class_name}", file=sys.stderr) + + # Check no other effects use these nodes + other_uses = False + for j, eff in enumerate(sorted_effects): + if j == i or j == i + 1: + continue + if out1 in eff.inputs + eff.outputs or in1 in eff.inputs + eff.outputs: + print(f"DEBUG: Other effect {eff.class_name} uses {out1 if out1 in eff.inputs + eff.outputs else in1}", file=sys.stderr) + other_uses = True + break + + if not other_uses: + print(f"DEBUG: Aliasing {in1} -> {out1}", file=sys.stderr) + # Alias in1 -> out1 (in1 uses same texture as out1) + aliases[in1] = out1 + used_nodes.add(out1) + used_nodes.add(in1) + break + else: + print(f"DEBUG: Skipping alias due to other uses", file=sys.stderr) + + return aliases + +def generate_cpp(seq: SequenceDecl, sorted_effects: List[EffectDecl], + aliases: Dict[str, str], flatten: bool = False) -> str: + """Generate C++ SequenceV2 subclass.""" + + class_name = seq.name.replace(' ', '_').replace('-', '_') + if not class_name[0].isalpha(): + class_name = 'Seq_' + class_name + class_name += 'Sequence' + + # Generate includes + includes = set() + for effect in seq.effects: + # Convert ClassName to snake_case header + # Remove V2 suffix first if present + base_name = effect.class_name + if base_name.endswith('V2'): + base_name = base_name[:-2] + + header = re.sub('([A-Z])', r'_\1', base_name).lower().lstrip('_') + if header.endswith('_effect'): + header = header[:-7] # Remove _effect suffix + includes.add(f'#include "effects/{header}_effect_v2.h"') + + cpp = f'''// Generated by seq_compiler_v2.py +// Sequence: {seq.name} + +#include "gpu/sequence_v2.h" +#include "gpu/effect_v2.h" +''' + + for inc in sorted(includes): + cpp += inc + '\n' + + cpp += f''' +class {class_name} : public SequenceV2 {{ + public: + {class_name}(const GpuContext& ctx, int width, int height) + : SequenceV2(ctx, width, height) {{ +''' + + # Node declarations + cpp += ' // Node declarations\n' + for node_name, node_decl in sorted(seq.nodes.items()): + if node_name in aliases: + # Aliased node + cpp += f' nodes_.declare_aliased_node("{node_name}", "{aliases[node_name]}");\n' + else: + node_type = NODE_TYPES[node_decl.type] + cpp += f' nodes_.declare_node("{node_name}", {node_type}, width_, height_);\n' + + cpp += '\n // Effect DAG construction\n' + + # Effect instantiation + for effect in sorted_effects: + inputs_str = ', '.join(f'"{inp}"' for inp in effect.inputs) + outputs_str = ', '.join(f'"{out}"' for out in effect.outputs) + + # Ensure class name has V2 suffix (add if not present) + effect_class = effect.class_name if effect.class_name.endswith('V2') else effect.class_name + 'V2' + + cpp += f''' effect_dag_.push_back({{ + .effect = std::make_shared<{effect_class}>(ctx, + std::vector<std::string>{{{inputs_str}}}, + std::vector<std::string>{{{outputs_str}}}), + .input_nodes = {{{inputs_str}}}, + .output_nodes = {{{outputs_str}}}, + .execution_order = {effect.execution_order} + }}); +''' + + cpp += ''' } +}; +''' + + return cpp + +def main(): + parser = argparse.ArgumentParser(description='Sequence v2 compiler with DAG optimization') + parser.add_argument('input', help='Input .seq file') + parser.add_argument('--output', '-o', help='Output .cc file', required=True) + parser.add_argument('--flatten', action='store_true', help='Generate flattened code (FINAL_STRIP mode)') + + args = parser.parse_args() + + # Parse timeline + sequences = parse_timeline(args.input) + + if not sequences: + print("Error: No sequences found in input file", file=sys.stderr) + sys.exit(1) + + # Process each sequence + all_cpp = '''// Generated by seq_compiler_v2.py +// DO NOT EDIT + +#include "gpu/sequence_v2.h" +#include "gpu/effect_v2.h" + +''' + + for seq in sequences: + # Validate DAG + validate_dag(seq) + + # Topological sort + sorted_effects = topological_sort(seq) + + # Lifetime analysis + lifetimes = analyze_lifetimes(seq, sorted_effects) + + # Ping-pong detection + aliases = detect_ping_pong(seq, sorted_effects) + + # Generate C++ + cpp = generate_cpp(seq, sorted_effects, aliases, args.flatten) + all_cpp += cpp + '\n' + + # Write output + with open(args.output, 'w') as f: + f.write(all_cpp) + + print(f"Generated {len(sequences)} sequence(s) -> {args.output}") + +if __name__ == '__main__': + main() |
